
MATRIXx TM

SystemBuildTM User Guide

SystemBuild User Guide

April 2004 Edition
Part Number 370761B-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 450 510 3055,
Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530, China 86 21 6555 7838,
Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11,
France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427, India 91 80 51190000,
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400,
Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466,
New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 095 783 68 51, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227,
Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on the documentation, send email to techpubs@ni.com.

© 2000–2004 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
AutoCode™, DocumentIt™, MATRIXx™, National Instruments™, NI™, ni.com™, SystemBuild™, and Xmath™ are trademarks of
National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Conventions

The following conventions are used in this manual:

<> Angle brackets that contain numbers separated by an ellipsis represent a
range of values associated with a bit or signal name—for example,
DIO<3..0>.

[] Square brackets enclose optional items—for example, [response].

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

© National Instruments Corporation v SystemBuild User Guide

Contents

Chapter 1
Introduction

Product Overview ..1-2
Starting SystemBuild ...1-3
Exiting SystemBuild ..1-4
Running SystemBuild Demos..1-4

Chapter 2
Catalog Browser

Loading Data..2-1
Loading Data from Xmath...2-2
Loading Data from the Catalog Browser in SystemBuild...............................2-2

Examining Catalog Components in the Catalog View ..2-4
Main Catalog ...2-4

Model ..2-5
SuperBlocks ..2-5
State Diagrams ..2-6
DataStores ...2-6
Components ..2-6
Variables ...2-6
UserTypes ...2-6

Libraries...2-7
Xmath Partitions..2-7

Working with Catalog Views ..2-7
Saving Data..2-10

Saving Data from Xmath...2-11
Saving Data from the Catalog Browser...2-11
Saving All Data ...2-12

Saving Selected Data ..2-12
Using AutoSave to Save Data ...2-13

Working with the Catalog Browser ...2-14
Using the Shortcut Menu in the Catalog Browser...2-14
Opening a SuperBlock in an Editor...2-14
Creating a New SuperBlock ..2-15
Creating a New UserType ...2-17
Modifying a Catalog..2-17
Modifying a UserType ..2-18

Contents

SystemBuild User Guide vi ni.com

Dragging SuperBlock and State Transition Diagram Icons
from the Catalog Browser to the Editor ... 2-19

Dragging SuperBlock Icons from the Catalog View........................ 2-19
Dragging SuperBlocks and State Transition Diagram Icons

from the Contents View... 2-19
Using the Drag and Drop Feature... 2-19

Updating the Catalog Browser Data from an Editor....................................... 2-20
Using the Tools Menu... 2-20

Chapter 3
File and Configuration Management

File Management ... 3-1
Putting New Items into the Untitled Default File ... 3-2
Modifying an Item in a File .. 3-3
Deleting an Item in a File.. 3-4
Moving an Item from One File to Another ... 3-5
Overwriting Items in a File ... 3-5
Creating a New File .. 3-7
Saving All Files... 3-8
Saving Xmath Partitions ... 3-8

Configuration Management... 3-8
Preparing to Use a CM Tool with SystemBuild ... 3-9

Windows Operating Systems.. 3-9
UNIX Operating Systems ... 3-9

Getting Messages from Your CM Tool .. 3-10
Connecting to Your Configuration Management Tool 3-10
Opening a File ... 3-11
Putting a File Under Configuration Control from SystemBuild 3-12
Using Other Configuration Management Options .. 3-12
Problems with Extension Names in Different Applications 3-12
Additional Resources .. 3-13

Chapter 4
SuperBlocks

SuperBlock Hierarchies... 4-1
Creating SuperBlocks.. 4-3

Creating a New SuperBlock from the Catalog Browser 4-3
Making a New SuperBlock from Existing Blocks.. 4-4
Creating a Copy of a SuperBlock ... 4-5

Creating a Copy with Copy and Paste .. 4-5
Creating a Copy by Modifying the SuperBlock Properties 4-6

Contents

© National Instruments Corporation vii SystemBuild User Guide

Defining SuperBlock Properties..4-6
SuperBlock Properties...4-7
Using the SuperBlock Properties Dialog ..4-7
Attributes Tab ...4-8
Code Tab ...4-10
Inputs Tab ...4-10
Outputs Tab...4-11
Document Tab...4-11
Comment Tab..4-12

Creating a SuperBlock Reference..4-12
Creating a Reference from the Catalog Browser...4-12
Creating a Reference from the Editor..4-14
Defining the Reference SuperBlock Properties...4-14

Renaming SuperBlocks..4-16
Replacing a SuperBlock with Catalog Browser Rename4-16
Renaming SuperBlocks in the Editor ..4-18

Using File SuperBlocks ...4-19

Chapter 5
Blocks

Types of Blocks ...5-2
Basic Functional Blocks ..5-2
Conditional Execution (Condition, IfThenElse Blocks)5-2
Repetitive Execution (While, Break Blocks) ..5-3
Terminating Execution (Stop Block)...5-3
Execution Ordering (Sequencer Block)...5-3

Creating a Model with Blocks ...5-3
Assigning the Basic Properties to Your Block ..5-4

Raising the Block Dialog Box...5-5
Defining the Basic Properties..5-5
Using the Common Buttons ..5-6

Connecting Blocks ...5-6
Connection Rules...5-7
Creating Connections ..5-7

Creating a Simple Connection ..5-8
Using the Connect Menu and the Toolbar Buttons...........................5-8

Using the Connection Editor ...5-10
Creating Connections..5-10
Deleting Connections..5-11
Altering the Number of External Inputs or Outputs5-11
Displaying Connections ..5-12
Exiting the Connection Editor...5-12

Contents

SystemBuild User Guide viii ni.com

Defining Your Block ... 5-12
Block Dialog Box Overview... 5-13

Differences Across Platforms ... 5-14
Dialog Box Navigation and Shortcuts .. 5-14

Block Dialog Box Fields... 5-15
Parameters .. 5-15
Code.. 5-16
Inputs .. 5-16
Outputs.. 5-17
States... 5-19
Document.. 5-19
Comment .. 5-19
Icon ... 5-20
Display.. 5-20

Entering Matrix Data in Block Dialog Boxes ... 5-26
Invoking the Matrix Editor ... 5-26
Entering a Matrix.. 5-27
Editing a Matrix.. 5-28

Specifying Labels and Names... 5-28
Specifying SuperBlock External Input Labels 5-29
Propagating Labels in a Hierarchy ... 5-29
Creating Sequential Names for Vectors and Matrices...................... 5-29
Shortcuts for Editing Labels or Names... 5-33

Specifying Data Types .. 5-34
Traditional Data Types ... 5-35
Data Type Checking ... 5-36
Rules for Data Type Usage... 5-39

Modifying Block Diagram Appearance .. 5-42
Automatic and Manual Connection Routing ... 5-43
Improving the Appearance of a Cluttered Diagram.. 5-44

Creating a SuperBlock That Uses the Connection Editor Extensively 5-46

Chapter 6
SuperBlock Timing and Transformation

Types of SuperBlocks.. 6-1
Continuous SuperBlocks... 6-1
Discrete SuperBlocks .. 6-2
Triggered SuperBlocks ... 6-3
Procedure SuperBlocks ... 6-3

Standard Procedure... 6-5
Macro Procedure... 6-5
Inline Procedure.. 6-6
Asynchronous Procedure .. 6-6

Contents

© National Instruments Corporation ix SystemBuild User Guide

Effects of Nesting on Enabled and Trigger SuperBlocks................................6-8
Using DataStores ...6-9
Simulation Timing Properties ..6-9

Timing of Discrete Subsystems...6-10
Timing of Trigger Subsystems ..6-11

At Next Trigger ...6-11
At Timing Requirement ..6-12
As Soon As Finished...6-12
Asynchronous..6-12

Example: Using an Asynchronous Triggered SuperBlock..............................6-13
Execution of Procedures During Simulation ...6-17
AutoCode Timing Properties ...6-19

AutoCode Real-time Application Execution Sequence6-19
AutoCode Timing Features Associated with Using DataStores......................6-21
AutoCode and the Asynchronous Triggered System6-24

 SuperBlock Transformation..6-24
Transformation Limitations and Implications ...6-25

Limitations ..6-25
Dynamic Blocks..6-25
Gain Block ..6-26
Integrators and PID Controller..6-26

Transformation Methods ...6-27
Transformation from the Catalog Browser6-27
Transformation from the SuperBlock Properties Dialog6-28
Initial Condition Transformations...6-29

Undoing a Transformation ..6-29

Chapter 7
SystemBuild Access

Overview..7-1
SBA Syntax..7-3

Command Syntax ..7-3
Function Syntax...7-3
Inputs, Optional Inputs, and Keywords...7-4

Basic SBA Tasks ...7-4
Create...7-4
Query ...7-5
Modify ...7-6
Display...7-6
Delete...7-6
Sample Scripts ...7-6

Contents

SystemBuild User Guide x ni.com

Using SBA... 7-7
Keyword Ordering .. 7-7
Block Parameters .. 7-8
Error Handling .. 7-8
Input Formats .. 7-9

Typical Input Formats .. 7-9
Multiple Input/Output Specification... 7-10

SuperBlock Editor Coordinate System ... 7-10
Tutorial .. 7-12

Building the Predator-Prey Model .. 7-12
Simulating the Predator-Prey Model... 7-14

Chapter 8
Simulator Basics

Dividing Your Model into Subsystems ... 8-1
How SystemBuild Divides Your Model Into Subsystems.............................. 8-2
Assigning SuperBlocks to Additional Subsystems... 8-3

Scheduling Subsystems ... 8-3
Scheduling Continuous Subsystems ... 8-4
Scheduling Discrete Subsystems .. 8-4

Properties of Discrete Scheduled Subsystems.................................. 8-5
Matching the Timing of AutoCode for Discrete Systems 8-7

Setting Options and Parameters for Your Model .. 8-7
Simulation Time Lines, Inputs, and Outputs .. 8-8

Input Time Line .. 8-8
Internal Time Line .. 8-8
Computing External Input Values .. 8-8
Output Time Line ... 8-9

Changing Parameters for Repeated Simulations... 8-9
The Simulation vars Keyword .. 8-10
Parameter Variable Scoping ... 8-10

Selecting an Integration Algorithm... 8-12
Integration Algorithms ... 8-13
Integration Algorithm Recommendations .. 8-13

Analyzing Your Model Prior to Simulation .. 8-14
Working with Algebraic Loops... 8-15
Using the analyze() Function ... 8-18

Invoking analyze from the Xmath Command Area.......................... 8-19
Invoking analyze from the SuperBlock Editor 8-21

Saving Your Model with the CREATERTF Command 8-21

Contents

© National Instruments Corporation xi SystemBuild User Guide

Some Additional Tools ..8-21
Extracting Dynamic State Values with the simout() Function.......................8-22

Keywords Specific to simout() for Initial Condition8-22
Outputs ..8-23

Showing and Setting Keyword Default Options ...8-23
Simulating Your Model ...8-24

SuperBlock Editor Simulation Interface ...8-24
Xmath Command Area Simulation Interface ..8-25

Sim Function Syntax...8-25
Background Simulation...8-27

Operating System Command Line Simulation Interface.................................8-28
Terminating Your Simulation ..8-29
Simulation Errors ...8-30

Simulation Software Errors ...8-30
Hardware Errors ..8-31
Operating System Errors ...8-31

Chapter 9
Interactive Simulation

Interactive Simulation Versus Interactive Animation ...9-2
Constructing an ISIM Model ...9-2

Using the IA Palettes ...9-3
Building an ISIM Car Model...9-3

Running ISIM ..9-6
Keywords and Syntax for Running ISIM..9-6

Invoking ISIM...9-6
Invoking ISIM for a Specific SuperBlock ..9-7
Invoking Non-Interactive Simulation with IA Blocks9-7
Pausing ISIM at a Non-Zero Time..9-7

ISIM Window..9-8
Special Notes on ISIM...9-9
Simulating the Car Model ...9-10

Using the Run-Time Variable Editor...9-11
RVE and ISIM...9-12
RVE Commands and Functions ..9-16
RVE-Compatible Blocks ...9-18

Contents

SystemBuild User Guide xii ni.com

Chapter 10
Linearization

Linearizing Single-Rate Systems About an Initial Operating Point.............................. 10-2
Continuous Systems.. 10-2

Explicit Form.. 10-2
Implicit Form.. 10-3

Discrete Systems ... 10-4
Exact Versus Finite Difference Linearization ... 10-5
Special Linear Models... 10-5

Continuous Time Delay .. 10-5
State Transition Diagrams... 10-6
FuzzyLogic Block ... 10-6
Integrator Block (Resettable) .. 10-6
UserCode Blocks... 10-6
Procedure SuperBlocks Referenced from Condition Blocks.......................... 10-6

Linearizing Single-Rate Systems About a Final Operating Point 10-6
Multirate Linearization.. 10-7

Kalman-Bertram Method .. 10-8
Interpretation of Multirate lin Results .. 10-8

Subsystem Method.. 10-11
Linearizing Fixed-Point Blocks .. 10-13

Chapter 11
Operating Point Computation

 trim() Syntax.. 11-2
 trim() Algorithm .. 11-4
 trim() Behavior .. 11-5

Stability ... 11-5
Free Integrators ... 11-5
Algebraic Loops .. 11-6

 trim() Examples ... 11-6

Chapter 12
Classical Analysis Tools

Using the Tools.. 12-2
How SystemBuild Proceeds to Analyze Your Model ... 12-2
Open-Loop Frequency Response .. 12-3
Time Response .. 12-8
Point-to-Point Frequency Response .. 12-11

Contents

© National Instruments Corporation xiii SystemBuild User Guide

Root Locus ...12-13
Application to a Linear System ...12-15
Application to a Multirate, Nonlinear System...12-16

Parameter Root Locus..12-20

Chapter 13
Advanced Simulation

Explicit versus Implicit Models ...13-1
Explicit Models ...13-1
Implicit Models ...13-2

Constraints ..13-2
Simulation State ..13-3
Implicit Outputs ..13-4
Initialization ..13-4
Examples...13-4

Operating Points ..13-9
Continuous Subsystem ..13-9
Discrete Subsystems..13-9

Inserting Initial Conditions ..13-11
Matrix Blocks in the Simulator..13-12
Sim Integration Algorithms ...13-13

Comparing Integration Algorithms ...13-14
Overview of the Algorithms..13-14

Euler Integration Method ..13-15
Second Order Runge-Kutta (Modified Euler) Method13-16
Fourth-Order Runge-Kutta Method ..13-16
Fixed-Step Kutta-Merson Method ..13-17
Variable-Step Kutta-Merson Method..13-17
Stiff System Solver ...13-18
Variable-Step Adams-Bashforth-Moulton Method13-20
QuickSim Method ...13-21
Over-Determined Differential Algebraic System Solver..................13-23
Gear’s Method...13-29

Absolute and Relative Tolerances ...13-30
Variable-Step Kutta-Merson Method..13-31
Stiff System Solvers (DASSL and ODASSL)13-31
Variable-Step Adams-Bashforth-Moulton Method13-32

Computing the Maximum Integration Stepsize in Variable-Step
Integration Algorithms ...13-32

Sample Simulation...13-33

Contents

SystemBuild User Guide xiv ni.com

State Events ... 13-41
ZeroCrossing Block .. 13-42

Example Using a Sinusoid Signal .. 13-43
Example Using a Bouncing Ball .. 13-44

Continuous UserCode Blocks ... 13-46

Chapter 14
UserCode Blocks

The Numerics of UCBs ... 14-2
Explicit UCBs ... 14-2
Implicit UCBs ... 14-3

The Structure of UCBs .. 14-4
Modes of Operation .. 14-4

INIT Mode.. 14-4
STATE Mode ... 14-5
OUTPUT Mode .. 14-5
MONIT Mode... 14-5
EVENT Mode... 14-5
LIN Mode ... 14-5

UCB Templates... 14-6
UserCode Function Calling Arguments .. 14-6

IINFO Array ... 14-8
RINFO Array .. 14-9
Mode Parameters .. 14-9

Direct Terms ... 14-11
State Events... 14-15

How SystemBuild Executes UserCode Blocks ... 14-16
Execution of STATE Versus OUTPUT Modes in the UserCode................... 14-16
Timing Attributes .. 14-17
Initialization .. 14-17

Simulation INIT Modes.. 14-17
Impolite UCB Initialize Mode.. 14-18

Numerical Integration Algorithm.. 14-19
Operating Points.. 14-21

Implicit Integration Algorithm Operating Point 14-21
Computing the Operating Point Jacobian Matrix 14-22
Computing the Implicit Solver Jacobian Matrix 14-23

Variable Interface UserCode Blocks ... 14-23
Using a Wrapper for SystemBuild to Simulate Code Written

for AutoCode.. 14-24
Writing a Wrapper .. 14-26

Converting Data from the sim() Interface 14-26
Converting Data Back to the sim() Interface................................... 14-27

Contents

© National Instruments Corporation xv SystemBuild User Guide

Specifying the Variable Interface..14-27
Setting Variable Interface Parameters...14-27
Specifying Data Types ..14-28
Specifying Input Shapes..14-28
Specifying Output Shapes...14-28

Running a Variable Interface Example ...14-28
Simulating the Variable Interface UCB in SystemBuild14-28
Generating Code for a Variable Interface UCB in SystemBuild14-29

UCB Programming Considerations ...14-29
Building, Linking and Debugging UCBs ..14-30

Collecting UserCode Files...14-30
Parameters Tab of the UserCode Block Dialog14-31
CSOURCE and FSOURCE ..14-31
Specifying Sources in the makefile...14-31
Reusing Sources from the Previous Simulation................................14-32
Specifying Another Location for UCB Code....................................14-32

Compiling and Linking User Code..14-32
Debugging User Code ...14-33

Posting Error Indications ...14-35
Writing User Messages to the Xmath Window...14-35
Simulation Errors...14-35

Simulation API ..14-37
Gathering UCB Reference Information ..14-37
Accessing and Modifying Variables ...14-39
Accessing Simulation Debugging Information ...14-41

Functions to Initialize and Terminate Debug Data14-42
Functions to Return the Dimensions of the SystemBuild Model......14-42
Functions to Return Signal Names of the SystemBuild Model14-43
Functions to Return Signal Values of the SystemBuild Model14-43
Functions to Return the Jacobians of the SystemBuild Model14-44
Function to Return the Simulation Status of simexe()14-44

SIMAPI Debug UserCode Block Example ...14-45
SIMAPI Debugging Notes ..14-47

Chapter 15
Fixed-Point Arithmetic

Introduction to Fixed-Point Arithmetic ...15-2
Fixed-Point Number Representation ...15-3
Conversion Between Fixed-Point Numbers ..15-6
Addition and Subtraction...15-7
Multiplication ..15-7
Division ...15-8

Contents

SystemBuild User Guide xvi ni.com

Relational Operations.. 15-9
Overflow ... 15-10

SystemBuild Fixed-Point... 15-11
User Interface .. 15-11
Simulator ... 15-12
Building a Model and Demonstrating Overflow... 15-12
Comparing Fixed- and Floating-Point Numbers... 15-17
Comparing the Effects of Different Conversion Sequences 15-21

Fixed-point Blocks and I/O Data Type Rules ... 15-24
Advanced Simulation Topics .. 15-26

Intermediate dialog boxTypes .. 15-27
Simulation Issues .. 15-30
32-bit Operation Issues ... 15-32
Gain Block: A Special Case ... 15-33

Radix Calculations .. 15-34
MinMax Data Logging .. 15-39

Activating MinMax Logging .. 15-39
Simulating with the minmax Keyword... 15-39
Saving MinMax Data Sets to a File.. 15-40

MinMax Display Tool... 15-40
Display Options... 15-41

User-Defined Data Types (UserTypes) ... 15-42
UserType Editor .. 15-42
UserType MathScript Commands... 15-43
Using UserTypes in SystemBuild ... 15-44
Storing UserTypes... 15-45

SystemBuild Functions in Fixed-Point.. 15-45
Linearization Function .. 15-45
Simout Function.. 15-46

Scaling Aid Blocks .. 15-47

Chapter 16
Components

Introduction ... 16-1
Component Scope ... 16-2
Component Interface... 16-2
Component Parameter Sets ... 16-3
Component References ... 16-3
Component Access.. 16-4

Open Components .. 16-4
Encrypted Components... 16-4
Licensed Components... 16-5

Contents

© National Instruments Corporation xvii SystemBuild User Guide

Using Components in SystemBuild Models ..16-5
Viewing Components ..16-5
Creating References to Components ...16-6
Controlling Component Parameters ..16-7
Loading Component Parameter Sets ...16-7
Changing Scope into a Component Catalog..16-8
Simulating Models with Components ...16-8

Creating Components ..16-9
Restrictions on Component SystemBuild Hierarchies16-9
Understanding Parameterization of Components..16-10
Understanding the Component Scope ...16-10
Mapping Exported Variables...16-11
Customizing the Component Dialog ...16-12
Documenting the Component..16-12
Creating Components Using the Component Wizard16-13
Modifying Components...16-13
Unmaking a Component..16-14

Creating and Using Parameter Sets ...16-14
Using SBA with Components..16-16
Distributing SystemBuild Components ...16-16

Encrypting and Licensing Components ..16-16
Examples..16-17

Encapsulating a SuperBlock Hierarchy...16-17
Exporting Component Parameters...16-18
Using the Parameter Set Interface ...16-20
Interface Mapping ...16-22
Using a Custom Dialog ...16-24

Chapter 17
SystemBuild Customization

User Initialization File ...17-1
File Format ..17-1
Printer Settings (UNIX)...17-4
Default Text Editor..17-4
Comment Editor ..17-5
Custom Menus...17-6
A Typical Template for User Menus...17-6
Using the Sample User Initialization File that Calls MSCs17-7

SystemBuild Resource File (UNIX) ..17-8
Controlling Colors ...17-8

Foreground and Background...17-9
SystemBuild and ISIM Color Settings..17-9

Resizing, and Repositioning the Display...17-10

Contents

SystemBuild User Guide xviii ni.com

Chapter 18
Custom Icons

IA Basics ... 18-1
Adding a Custom Icon to a Block Diagram.. 18-1
Sample Icon Source .. 18-2

Defining Custom SystemBuild Icons .. 18-3
Importing or Referencing an External Bitmap.. 18-3
Creating or Attaching an IA Source Icon.. 18-4

Icon Source File... 18-7
Icon Identification ... 18-9
Types ... 18-10

Hardcoded Integer Type ... 18-10
Hardcoded Real Types.. 18-10
Hardcoded String Type... 18-10

General Control and Calculation Statements .. 18-11
General Graphic Statements and Coordinate System 18-12
General Graphic Characteristic Statements .. 18-16
Animation Statements ... 18-19
Pointer Action Statements... 18-20
Palette Definition .. 18-21

Animation Configuration File ... 18-22
Important Animation Configuration Keywords for Customized Icons 18-24
Icon Source File for Customized Icons and New Palettes 18-25

Building Your Own IA Custom Icons... 18-25

Chapter 19
Custom Palettes and Blocks

Custom Palettes ... 19-1
Creating Palette Files .. 19-1
Palette File Syntax .. 19-3

PaletteFile ... 19-4
BlockDirectory ... 19-5

Defining the Default SystemBuild Palette .. 19-5
Closing and Reloading the Default Palette ... 19-6

Custom Blocks... 19-6
What Kinds of Blocks Can Be Customized? .. 19-7
Creating a Basic Custom Block .. 19-7
Creating More Sophisticated Custom Blocks ... 19-10

Step 1: Create a Custom Block Using the Custom Block Wizard.... 19-10
Step 2: Add a Custom Block to a Custom Palette File 19-10
Step 3: Open the Custom Palette File ... 19-11

Contents

© National Instruments Corporation xix SystemBuild User Guide

Including a Startup MathScript File with the Custom Block19-11
Including a Custom Help File with the Custom Block....................................19-13
Additional Custom Block Features ...19-14

Dependent File ..19-14
Icon for the Palette Browser..19-15
Parameter Sets...19-15

Using Relative Paths for Icon Files ...19-15
Supporting Commands and Functions ...19-18

SystemBuild Access Support ..19-18
SystemBuild Utilities (SysbldEvent, SysbldRelease)19-18

SysbldEvent ..19-18
SysbldRelease ...19-19

Appendix A
Bibliography

Appendix B
Technical Support and Professional Services

Index

© National Instruments Corporation 1-1 SystemBuild User Guide

1
Introduction

Congratulations on purchasing SystemBuild, the industry’s most powerful
system modeling and simulation package. This manual introduces you to
many features of SystemBuild. It focuses primarily on model building and
editing tasks, object relationships, and conceptual descriptions of complex
topics, such as analysis and simulation.

Although the SystemBuild blocks and SystemBuild functions and
commands are introduced here, they are discussed in detail in the MATRIXx
Help. For convenient descriptions of block dialogs and the user interface,
refer to the context-sensitive MATRIXx Help. For information on using the
MATRIXx Help, type help help command in the Xmath command area.

SystemBuild is closely tied to Xmath. This manual assumes you have
knowledge of basic Xmath capabilities such as plotting, printing, Xmath
command and function syntax, and MathScript programming. The Xmath
User Guide explains how to use the Xmath analysis and design package.

Additional resources are as follows:

• The STD Editor is covered in the SystemBuild State Transition
Diagram Block User Guide.

• The BlockScript User Guide covers the usage of the BlockScript
language for SystemBuild.

Chapter 1 Introduction

SystemBuild User Guide 1-2 ni.com

Product Overview
The SystemBuild design environment plays a central role in the MATRIXx
product family (refer to Figure 1-1).

Figure 1-1. The MATRIXx Product Family

Xmath is the entry point to the MATRIXx product family. SystemBuild
makes use of Xmath numerical analysis, graphics, data handling, and file
management capabilities. You must start SystemBuild from the Xmath
Commands window, but you can exit from either SystemBuild or Xmath.
The first window to appear is the SystemBuild Catalog Browser.

SystemBuild provides a hierarchical Catalog Browser and other
organization tools to help manage your models and model data. You
can easily reuse or share models you create.

Whether your design is simple or complex, a user-friendly graphical
interface and extensive library of blocks, utility functions, and tools
make SystemBuild the fastest way to express an engineering concept as
a graphical model. You can validate a model design immediately using
SystemBuild analysis and simulation tools.

Xmath

RealSim Series

Document It

numerics, graphics

programming

document generation

rapid prototyping

data handling

SystemBuild

simulation, validation, and

visual or script-driven

generated
code

AutoCode

code generation

real-time
code

model documentation

customization

model design

user code external
executables

Chapter 1 Introduction

© National Instruments Corporation 1-3 SystemBuild User Guide

Although SystemBuild capabilities are extensive, the interface is purposely
open and flexible so that you can do even more. You can implement your
own commands and functions, create your own blocks, and link in external
code. You also can customize the simulation environment.

The remainder of this chapter focuses on the following topics:

• Starting SystemBuild

• Exiting SystemBuild

• Running SystemBuild Demos

Starting SystemBuild
To start SystemBuild, select Window»SystemBuild from the Xmath
Commands window, or type build in the command area. The Catalog
Browser appears.

The build command also allows you to specify a SuperBlock name. This
syntax is:

build "SB_Name"

where SB_Name is the name of a SuperBlock in string form. When you use
the command in this form, the following rules apply:

• If SystemBuild is not running, it is launched and a new continuous
SuperBlock of the specified name is created and displayed in the
SuperBlock Editor window.

• If SystemBuild is running and a SuperBlock with the specified name
is in the current catalog, the SuperBlock is displayed in the SuperBlock
Editor window.

• If SystemBuild is running but the specified SuperBlock does not exist,
a new continuous SuperBlock by that name is created and displayed.

Chapter 1 Introduction

SystemBuild User Guide 1-4 ni.com

Exiting SystemBuild
To exit SystemBuild from the Catalog Browser, select File»Exit.

You are asked if you want to save your work before exiting. If you answer
yes, the Catalog Browser Save dialog box appears. Click the Help button
on the dialog box if you need assistance.

Exiting from the Catalog Browser leaves Xmath running.

To exit all MATRIXx processes at once, (UNIX) select File»Quit or
(Windows) select File»Exit from the Xmath Commands window, or type
quit in the command area.

Note You are prompted to save, but only a full save to save.xmd is performed in this
circumstance.

Running SystemBuild Demos
NI provides a collection of demos that demonstrate various features of
SystemBuild. User messages are logged in the Xmath message area.

Caution Running a SystemBuild demo deletes SystemBuild and Xmath objects currently
in your workspace. You might want to save them before you start.

Complete the following steps to run a SystemBuild demo:

1. Type demo in the Xmath command area.

The Xmath Demos dialog box comes on view.

2. Select SystemBuild Demos and click OK.

If you have a model loaded, the Save SysBld & Xmath workspace
dialog box comes on view.

3. Indicate whether you want your model saved.

The SystemBuild Demos dialog box comes on view.

4. Select the desired demo and click OK.

Information is presented to you in the Xmath log area, and additional
dialog boxes are presented to you.

5. Follow the instructions for the selections that you make.

© National Instruments Corporation 2-1 SystemBuild User Guide

2
Catalog Browser

A SystemBuild catalog is a complex storage structure that can contain
models, model data, SuperBlock and block parameters, and other objects
unique to SystemBuild. The Catalog Browser handles communication
between SystemBuild, Xmath, and the operating system. It also manages
the interrelationship of objects within the catalog. The Catalog Browser
provides an interactive way to create, edit, view, and organize catalog
objects. The Catalog Browser is the entry point to the SuperBlock Editor,
and the State Transition Diagram (STD) Editor.

This chapter guides you through Catalog Browser tasks associated with the
Catalog view. The major topics are as follows:

• Loading Data

• Examining Catalog Components in the Catalog View

• Working with Catalog Views

• Saving Data

• Working with the Catalog Browser

The Catalog Browser also allows you to perform file and configuration
management. These tasks are associated with the File view and are
discussed in Chapter 3, File and Configuration Management.

Loading Data
You can load data into SystemBuild from either Xmath or SystemBuild.
Loading data is like importing data. It becomes part of the current catalog
without retaining any association of where the data came from. Loading
data is different from opening a file. You can use either operation to load
and use data in SystemBuild, but opening a file also associates the loaded
data with a file for saving it at a later time. Refer to the File Management
section of Chapter 3, File and Configuration Management, for further
information.

Chapter 2 Catalog Browser

SystemBuild User Guide 2-2 ni.com

Loading Data from Xmath
The load command can load an entire file or selectively load Xmath,
SystemBuild, or UserType information. The basic syntax is:

LOAD {xmath, build, usertype} "fileName"

To open the MATRIXx Help for the load command, type help load in
the Xmath command area.

Loading Data from the Catalog Browser in SystemBuild
From the Catalog Browser, you can load a whole file, or you can selectively
load data.

Complete the following steps to load a file from the Catalog Browser:

1. Select File»Load.

The Load dialog box appears.

2. Select the file and the data to be loaded, and then click OK.

Click the ? button for information on using this dialog box.

Example 2-1 shows you how to selectively load data using the Advanced
Load dialog box. The data loaded in the example is used throughout this
chapter.

Example 2-1 Loading Portions of a Catalog

1. Copy a data file from the SystemBuild examples directory to your
current working directory. In the Xmath command area, type:

copyfile "$SYSBLD/examples/manual/cb_ex1.cat"

We refer to this file throughout this chapter.

2. Start SystemBuild from Xmath by selecting Windows»SystemBuild.

The Catalog Browser is launched.

3. In the Catalog Browser, select File»Load. When the Load dialog box
appears, select the cb_ex1.cat file, but do not click OK at this point.

This catalog file contains the folders Model, SuperBlocks, State
Diagrams, DataStores, Components, Variables, and
UserTypes. The most common action is to load an entire catalog.
However, in this example you will load a little at a time.

4. Click the Advanced button to view the contents of the catalog before
loading it.

Chapter 2 Catalog Browser

© National Instruments Corporation 2-3 SystemBuild User Guide

The Advanced Load dialog box appears. By default, an alphabetical
listing of all objects in the Model folder of the catalog are displayed on
the right.

In the Table of Contents, each folder contains a listing of different
object types.

5. Click each different folder in the Advanced Load dialog box to see
what it contains.

6. Load selected SuperBlocks as follows:

a. Click the SuperBlocks folder.

b. Enable the Load Hierarchy checkbox.

SuperBlocks can contain other SuperBlocks, forming a
SuperBlock hierarchy. Enabling this checkbox ensures that if you
load a single SuperBlock, all SuperBlock elements included in
its hierarchy, including State Diagrams or DataStores, are also
loaded. It does not affect objects other than SuperBlocks, such as
components, libraries, STDs, or DataStores that are not included
in diagrams.

c. Select continuous automobile from the Contents pane of the
Advanced Load dialog.

d. Hold down the <Ctrl> key and click Cruise Control System to
select an additional SuperBlock.

This action selected multiple SuperBlocks because the Load
Hierarchy checkbox is enabled.

e. Continue selecting SuperBlocks until you have selected all
SuperBlocks.

f. Click Apply to load all selected SuperBlocks.

7. Select the State Diagrams folder. Select the first STD, holding
down the <Shift> key, select the last one. Click Apply to load them.

8. Select the DataStores folder. Select Desired Speed. Click Apply.

9. Select the Components folder. Select the component nlinteg, and
click Apply to load it.

10. Click the UserTypes folder. Select all the UserTypes. Click Apply.

11. Click OK to complete the advanced load.

The Catalog Browser is shown in Figure 2-1 with cb_ex1.cat
loaded.

Chapter 2 Catalog Browser

SystemBuild User Guide 2-4 ni.com

Figure 2-1. Catalog Browser View of Data from cb_ex1.cat

Examining Catalog Components in the Catalog View
All data is loaded into the Main catalog. The catalog name is shown directly
above the left pane (refer to Figure 2-1) when the CatalogView tab is used.
This is the default view. Libraries are shown as a separate catalog.

Main Catalog
The Main catalog has seven folders: Model, SuperBlocks, State
Diagrams, DataStores, Components, Variables, and UserTypes.
These objects must all have unique names. In this section, you examine
each of these components.

For all the folders, clicking an element in the left pane of the Catalog
Browser causes the display of all the contained elements in the right pane
of the Catalog Browser. For example, clicking a particular SuperBlock
causes all elements within that SuperBlock to be listed in the right pane of
the Catalog Browser.

Chapter 2 Catalog Browser

© National Instruments Corporation 2-5 SystemBuild User Guide

Model
The Model folder is a hierarchical node that supports the combination of
two other folders: SuperBlocks and State Transition Diagrams.
The elements at the left of the hierarchy are the highest level elements. If
an element has a lower-level element, a + appears to the left of the element.
Clicking the + expands the hierarchy below that element. This continues in
a tree-like fashion down the hierarchy. Similarly, if an element heads an
open hierarchy, a – appears to the left of the element. Clicking the –
collapses the hierarchy. This works the same way hierarchical folders work
in Windows Explorer and other similar products.

At the top level of the model are SuperBlocks. When you select one of these
elements, its contents are displayed in the right pane of the window.
SuperBlocks contain blocks of various types.

SuperBlocks
SuperBlocks are containers that organize and describe blocks. Blocks
perform the actual work in a system. They are referred to as functional
blocks or primitives. The collection of primitive blocks can include:

• State Transition Diagrams (STDs)

• DataStores

• References to other SuperBlocks

A specific SuperBlock is only defined once in a catalog. References can
then be made to it in multiple locations. These references can be thought
of as instances of the SuperBlock. References within a SuperBlock are
referred to as children, and the SuperBlock itself is called the parent.
This parent/child nesting forms a SuperBlock hierarchy. A SuperBlock at
the top of a hierarchy is called a top-level SuperBlock. It has no parent.

You can see and work with the SuperBlock hierarchy in the Model folder.
You can find a list of SuperBlocks in the SuperBlocks folder.

You work with SuperBlocks throughout this chapter. Additionally,
Chapter 4, SuperBlocks, describes how to create SuperBlocks and
SuperBlock references. Chapter 6, SuperBlock Timing and
Transformation, describes how the different types of SuperBlocks
influence model timing.

Chapter 2 Catalog Browser

SystemBuild User Guide 2-6 ni.com

State Diagrams
State Transition Diagrams (STDs) graphically implement finite state
machines. These objects are documented in the State Transition Diagram
User Guide.

DataStores
DataStores are blocks that provide global data storage. Clicking the
DataStores folder displays all DataStores in the model in the right pane.

In the Xmath command area, type help datastore for detailed
information.

Components
A component is an encapsulated SuperBlock hierarchy. In the Catalog
Browser, each component forms a separate catalog. The encapsulation of a
SuperBlock into a component circumvents the restriction that all catalog
elements must have unique names. Although each component must have a
unique name, objects encapsulated within it are not visible to other catalogs
because a component has its own scope. However, variables can be
exported from a component. Chapter 16, Components, discusses
components in detail.

Variables
Selecting this folder displays all global variables defined at this scope of the
catalog. If the same variable appears multiple times as a different data type,
SystemBuild indicates an unknown type.

UserTypes
UserTypes is a feature that allows you to assign meaningful names to data
types (refer to the User-Defined Data Types (UserTypes) section of
Chapter 15, Fixed-Point Arithmetic). When you define and use UserTypes
in your models, you can see what they are by clicking the UserTypes
folder. Expanding the folder lists them in the left pane. Clicking the folder
lists them in the right pane.

UserTypes are stored in the Main catalog and uses the same catalog name
space. This means that your UserTypes must have unique names among
all catalog items. Prior to Release 7.0, UserTypes were stored in the
Xmath _datatypes partition. UserTypes in models created prior to
this release are automatically converted to catalog objects. If a name

Chapter 2 Catalog Browser

© National Instruments Corporation 2-7 SystemBuild User Guide

collisions occurs, the UserType and any references to it are renamed to
udt_oldUserTypeName.

UserTypes have full SBA support (createusertype, modifyusertype,
deleteusertype). Refer to the SBA topic in the MATRIXx Help.

Libraries
Libraries are SystemBuild model files that are not loaded directly into
SystemBuild, but you can reference their contents from SystemBuild.
You load libraries by setting the sblibs keyword to the name of the
model file(s) in Xmath using the setsbdefault command—for example,

setsbdefault, {sblibs="file1.cat file2.cat"}

where the files can be File SuperBlocks (refer to the Using File
SuperBlocks section of Chapter 4, SuperBlocks) or file components
(refer to the Component References section of Chapter 16, Components).

Xmath Partitions
The Xmath Partitions folder provides read-only access to the currently
defined Xmath partitions and the variables that exist in those partitions.
Clicking the folder itself lists the partitions in the right pane. Expanding the
folder shows the partitions in the left pane. Clicking a partition shows the
variables in the partition in the right pane.

Working with Catalog Views
As seen in Figure 2-1, the Catalog Browser has two panes. The left pane
displays the Catalog view, and the right pane shows the Contents view.
There are two display modes using the Catalog and Contents views. When
you select one of the labels in the Catalog view (Model, SuperBlocks, State
Diagrams, DataStores, and so forth), a listing of all currently defined
catalog items of the selected type is displayed in the Contents view.

This section introduces some of the ways you can view and organize
catalog items in a tutorial format.

1. If you do not have the model loaded, load it following the instructions
provided in Example 2-1.

2. Click the + symbol next to the Model folder to list all top-level
SuperBlocks and BetterState charts in the Catalog view.

3. Select the Discrete Cruise System top-level SuperBlock to view the
SuperBlock contents in the Contents view.

Chapter 2 Catalog Browser

SystemBuild User Guide 2-8 ni.com

The Contents view displays a primitive as a simple block icon and lists
the block type.

Each top-level SuperBlock (shown as a folder preceded by a +) has
child items you can view in the Contents view (the right pane).

4. Click the + symbol to expand a subhierarchy in the Catalog view.

The symbol changes to a minus sign (–). Clicking the minus sign
collapses the hierarchy.

5. To select all levels of a hierarchy, select a SuperBlock. Then select
Edit»Hierarchy Select Mode, or click the Hierarchical select mode
toolbar button.

In both the Catalog view and the Contents view, SystemBuild also
selects all other referenced elements in the selected SuperBlock
hierarchy. This feature stays on until you toggle it off the same way.

6. Click the SuperBlocks folder.

All SuperBlocks appear in the Contents view.

7. Expand the SuperBlocks folder by clicking the + beside it.

A list of all SuperBlocks in the model appears (with no hierarchy
indicated).

8. Select any one of the SuperBlocks.

Its contents appear in the right pane.

9. Select the State Diagrams folder, and then expand the State
Diagrams folder.

State Diagrams are primitive blocks. Therefore the contents are
displayed directly in the Catalog view and no new information is
displayed in the Contents view.

10. Repeat step 9 for DataStores, Variables, and UserTypes.

Each of these folders displays primitive information.

11. Expand the Components hierarchy. Select nlinteg, and then select
View»Component Catalog.

Note Component Catalog is also available from the Shortcut menu, which you can obtain
by right-clicking the mouse after you select the object.

The Catalog view changes from Main to nlinteg, and the Contents view
changes accordingly.

12. To return to the Main catalog, select View»Main Catalog, or
right-click, and then select Main Catalog.

Chapter 2 Catalog Browser

© National Instruments Corporation 2-9 SystemBuild User Guide

13. Select the Libraries folder to see the filenames of the libraries
available to this model in the right pane.

14. Expand the Libraries folder in the Catalog view to see the library
filename in the Contents view.

15. Click the filename in the Catalog view to see the SuperBlocks in this
library listed in the Contents view.

You can drag any of these SuperBlocks in the Contents view into your
model, but you cannot open these SuperBlocks.

16. Select the Xmath Partitions folder to see a list of partitions defined
in Xmath in the Contents pane.

17. Expand the Xmath Partitions folder to see a list of partitions in the
Contents pane.

18. Select one of the partitions in the Catalog pane to see its contents
displayed in the Contents pane.

19. To change the width of the panes to accommodate your data, widen the
window or adjust the pane width. This task is slightly different on
UNIX and Windows.

(UNIX) Click the small square button towards the bottom of the dividing
line between the Catalog and Contents views, and drag horizontally.

(Windows) Click directly on the dividing line between the panes, and
drag horizontally.

20. To change the width of a column in the Contents view, click directly
on the dividing line, and drag left or right.

21. Click the heading of any column in the Contents view to sort the
contents by that category. Click the heading a second time to reverse
the sort.

By default, items in the Contents view are displayed in alphabetical
order by name.

Figure 2-2 shows the Catalog Browser with expanded catalog hierarchies
and modified Contents view.

Chapter 2 Catalog Browser

SystemBuild User Guide 2-10 ni.com

Figure 2-2. Expanded Hierarchies and Adjusted Contents View (Windows)

Saving Data
This section describes how to save the current model without using the File
view. You can save your catalog from Xmath or the Catalog Browser. In
addition, SystemBuild has an automatic save feature, AutoSave, that can
automatically save your catalog data at a specified interval.

You also can use file management directly in the File view of the Catalog
Browser to save data. For more information, refer to the File Management
section of Chapter 3, File and Configuration Management.

Catalog name Contents name Drag divider to

Drag left/right to change pane width

Collapse
hierarchy

Expand hierarchy

change width

Click a column title to sort

Chapter 2 Catalog Browser

© National Instruments Corporation 2-11 SystemBuild User Guide

Saving Data from Xmath
You can save any combination of Xmath and SystemBuild data in ASCII
or binary format using the Xmath SAVE command.

The general syntax is:

SAVE "fname" {xmath, build, usertype, superblock="name", hierarchy}

Each keyword specifies a subset of data to be saved. The default behavior
is inclusive, as demonstrated in the following syntaxes.

For a full description, refer to the Save topic of the MATRIXx Help.

Saving Data from the Catalog Browser

Note The Catalog Browser allows you to save all data or selected data. In the Catalog view
only, the File»Save option behaves exactly like the File»Save As option.

Syntax Behavior

SAVE {ascii} Saves all to save.xmd (default) in ASCII. (The
default Xmath SAVE format is binary. You must
specify ascii if you need to share saved
catalog files across platforms.)

SAVE "fname" Saves all data to a file you specify.

SAVE "fname" {build} Saves all SystemBuild data, including Xmath
data and UserTypes (refer to the User-Defined
Data Types (UserTypes) section of Chapter 15,
Fixed-Point Arithmetic).

SAVE "fname"
{superblock="sbname",hierarchy}

Saves the specified SuperBlock, all
SuperBlocks in its subhierarchy, and all Xmath
data.

Chapter 2 Catalog Browser

SystemBuild User Guide 2-12 ni.com

Saving All Data
To save all data from the Catalog Browser:

1. Click in the Main catalog to deselect any selected items.

2. Select File»Save As.

This raises the Save As dialog box. The basic functionality is identical
to that of the SAVE command, with the exception that the default save
format is ASCII. The default format also saves all data.

3. Specify the filename and click OK.

Click the dialog ? button for additional information.

Saving Selected Data
The Xmath SAVE command allows you to specify a single SuperBlock
hierarchy to be saved. In the Catalog Browser, you can selectively save
multiple SuperBlock hierarchies.

You must make the selection(s) before you invoke the Save dialog. When
the dialog box is raised, you must enable the Selected radio button for
SuperBlocks. Example 2-2 demonstrates this process.

Example 2-2 Saving Selected Data

In this example you save the file you loaded earlier by selected catalog
items. Refer to Figure 2-2.

1. Select Edit»Hierarchy Select Mode.

2. Click Cruise Control System.

All objects in this system hierarchy are highlighted.

3. Select File»SaveAs.

4. In the Save dialog, enable the Selected SuperBlocks radio button.

Note If you do not enable this option, your preselections are ignored, and SystemBuild
saves all data.

5. Specify the name cb_ex1_ccs.cat.

6. Click OK.

The preselected objects are saved in the specified file.

Chapter 2 Catalog Browser

© National Instruments Corporation 2-13 SystemBuild User Guide

Using AutoSave to Save Data
SystemBuild has an automatic save capability that you can activate by
resetting the SystemBuild defaults from the Xmath command area
with the SETSBDEFAULT command. You must specify two parameters,
autosavefile and autosavetime, and both must have value (cannot
be null/zero) for the autosave to take place. autosavetime is the number
of seconds between saves. autosavefile specifies the name of the file in
which the catalog data is saved.

The AutoSave feature saves catalog data only. Xmath data is not supported
by AutoSave.

Autosave is disabled by default. To enable it every time you start
SystemBuild, add the SETSBDEFAULT command to your startup.ms file.
For more on this feature, type help SETSBDEFAULT in the Xmath
command area, and then look at the Help on the autosavefile and
autosavetime keywords.

Example 2-3 Using AutoSave

1. Start AutoSave by typing the following command from the Xmath
command area:

SETSBDEFAULT {autosavefile="autosave.cat", autosavetime=3600}

2. From the Catalog Browser, select View»Update to update the new
values.

AutoSave is now set to save all catalog data to a file named
autosave.cat every 60 minutes.

3. To change the save time interval to every two hours, type in the Xmath
command area:

SETSBDEFAULT {autosavetime=7200}

4. Select View»Update in the Catalog Browser to activate the new
interval.

5. To check the current AutoSave settings, type the following in Xmath:

SHOWSBDEFAULT {autosavefile,autosavetime}

6. To turn off AutoSave, set autosavetime to 0 with the following
command in Xmath:

SETSBDEFAULT {autosavetime=0}

7. Select View»Update in the Catalog Browser.

Chapter 2 Catalog Browser

SystemBuild User Guide 2-14 ni.com

Working with the Catalog Browser
The Catalog Browser is the gateway to the SystemBuild Editor. In its role
as a data manager, the Catalog Browser can operate on catalog elements
individually, or as hierarchies.

Using the Shortcut Menu in the Catalog Browser
The Shortcut menu, also known as the Quick Access menu, is a special
feature to speed up your SuperBlock editing tasks. This menu has the same
functionality as the Edit menu on the menu bar. We discuss the usage of this
menu first because you are going to use it throughout this section.

(UNIX) To raise the Shortcut menu, right-click an object. Drag to select a
menu item.

(Windows) To raise the Shortcut menu, right-click an object and release.
The menu appears. Select a menu item.

Menu items might be inactive depending on the preselected object(s).
In particular, if the hierarchy select mode is enabled, most Shortcut menu
items are inactive because the selections are only valid if a single object is
selected.

Opening a SuperBlock in an Editor
You can open any SuperBlock listed in the Catalog Browser in the
appropriate Editor using any one of several methods.

Complete the following steps to open a SuperBlock from the Contents view
of the Catalog Browser:

1. In the Catalog view of the Catalog Browser, select the Model folder,
but leave it in the collapsed state (+).

This lists all currently defined SuperBlocks in the Contents view.

2. In the Contents view, double-click the SuperBlock that you wish to see
in an Editor, or select it and open this SuperBlock using one of the
following techniques:

a. Right-click and select Open from the Shortcut menu.

b. Click the Open toolbar button.

c. Select Edit»Open.

Chapter 2 Catalog Browser

© National Instruments Corporation 2-15 SystemBuild User Guide

Complete the following steps to open a SuperBlock rom the Catalog view
of the Catalog Browser:

1. Expand the model hierarchy in the Catalog view in the Model folder.

2. Select the SuperBlock chart that you wish to see in an Editor. Open this
SuperBlock chart using one of the following techniques:

a. Right-click and select Open from the Shortcut menu.

b. Click the Open toolbar button.

c. Select Edit»Open.

The following is convenient information to know at this point:

• In the Catalog view, the icon for each SuperBlock open in the Editor
has a magenta check, indicating that it is open.

• You can edit up to 20 SuperBlocks simultaneously. Each SuperBlock
opened appears in a separate Editor window.

• The scope of the SuperBlock being edited appears in the title bar of the
Editor window. The scope specifies the object position within its
catalog. It also makes it possible to differentiate between SuperBlock
or Component references that appear in the multiple editors.

• The Window menu in the Catalog Browser provides the ability to
iconify, deiconify, or close all editors. The bottom of this menu
displays a list of the SuperBlocks or State Transition Diagram pages
being currently edited. Because the name includes the scope, it might
be truncated. Clicking the name makes the editor containing that
SuperBlock or State Transition Diagram the active window.

• You cannot edit the same object in multiple windows. If a SuperBlock
is currently open in an editor window, attempting to open the object
merely raises the editor that contains it.

Creating a New SuperBlock
You can create new SuperBlocks from the Xmath or SystemBuild. Refer to
the Creating SuperBlocks section of Chapter 4, SuperBlocks.

To create a new SuperBlock from the Catalog Browser:

1. Select File»New»SuperBlock.

The SuperBlock Properties dialog box appears atop an empty editor
window.

Chapter 2 Catalog Browser

SystemBuild User Guide 2-16 ni.com

Figure 2-3. SuperBlock Properties Dialog Box

Click the Help button for a full description of each field.

2. Give the SuperBlock a unique name.

You also can provide other properties from this dialog, but Name is
the only required field. Providing an existing name of a SuperBlock
produces an error.

3. Click OK.

An editor window opens with a SuperBlock ID bar, the strip of
SuperBlock information that appears below the editor toolbars and
above the diagram work area, with the name and inputs and outputs.
The new SuperBlock does not yet appear in the Catalog Browser.

4. Create the SuperBlock to the desired degree at this point.

You must create at least one block in the SuperBlock. We cover this
information in Chapter 4, SuperBlocks.

5. Select File»Update or click the Update toolbar button from the editor
window to place this SuperBlock in the Catalog Browser as a top-level
SuperBlock in the Catalog view.

Example 2-4 takes you through the process of creating a new SuperBlock
and updating the Catalog Browser. Refer to the previous procedure as
necessary.

Chapter 2 Catalog Browser

© National Instruments Corporation 2-17 SystemBuild User Guide

Example 2-4 Creating a New SuperBlock and Updating the Catalog Browser

1. Create a new SuperBlock.

2. Name the SuperBlock NewSB, change the type to Discrete, and
click OK.

A new blank SuperBlock appears in the editor window.

3. In the Catalog view, click the SuperBlock label to display all currently
defined SuperBlocks.

Note that NewSB does not appear.

4. Press <F5> to update the Catalog Browser.

The SuperBlock NewSB now appears in the SuperBlock folder.

Creating a New UserType
Complete the following steps to create a new UserType from the Catalog
Browser:

1. From the Catalog Browser, select File»New»UserType.

The UserType Properties dialog box comes on view.

2. Enter the Name of your new UserType.

3. Select its data type from the combo box.

4. If the data type is fixed point, select the Radix.

The remaining fields on this dialog box are read-only and pertain to
fixed-point data types. They are dependent on the data type and the
radix. These fields appear in the Contents view of the Catalog Browser
beside each UserType.

Modifying a Catalog
Example 2-5 shows you how to modify a catalog. If you do not currently
have the cb_ex1.cat model loaded into the Catalog Browser, return to
Example 2-1 and load it.

Example 2-5 Modifying Catalogs

1. Expand the SuperBlocks folder in the Catalog view.

2. Select the Controller Logic SuperBlock. Right-click, and select
Copy from the Shortcut menu.

The object is copied to the Clipboard.

Chapter 2 Catalog Browser

SystemBuild User Guide 2-18 ni.com

3. Select Shortcut»Paste to paste the contents of the Clipboard into the
catalog.

SystemBuild places a SuperBlock named Copy of Controller
Logic in the list of SuperBlocks.

4. Select Copy of Controller Logic, and then right-click to raise the
Shortcut menu. Select Rename.

The Rename dialog box appears.

5. Supply the name Modified Controller Logic, ensure that
Rename all references is enabled, and click OK.

6. Open the new SuperBlock in the editor, and modify it as follows:

a. Select File»SuperBlock Properties.

The SuperBlock properties dialog box appears.

b. Change the Sample Period to 0.01 and the Sample Skew to 0.01.

c. Click OK.

7. From the editor, select Window»Catalog Browser to bring up the
Catalog Browser.

8. In the Catalog Browser, select the SuperBlock hierarchy to view the
block information for top-level SuperBlocks.

Controller Logic and Modified Controller Logic still have the same
Sample Period and Sample Skew values because the changes have not
been written to the Catalog Browser.

9. In the Catalog Browser, select View»Update, or press <F5> to force
the update.

Updating the Catalog Browser is discussed further in Updating the
Catalog Browser Data from an Editor section.

Modifying a UserType
To modify a UserType from the Catalog Browser, complete the following
steps:

1. Select the UserType that you wish to modify in either the Catalog view
or the Contents view.

2. Right-click to bring up the Shortcut menu, and select Properties.
Alternatively, select View»Properties, or double-click a UserType in
the Contents view.

The UserType Properties dialog box comes on view.

3. Edit the Name, Data Type, or Radix fields, and click OK.

Note Changing the name creates a new UserType, and the old one remains.

Chapter 2 Catalog Browser

© National Instruments Corporation 2-19 SystemBuild User Guide

Dragging SuperBlock and State Transition Diagram Icons from the
Catalog Browser to the Editor

You can “drag and drop” objects from the Catalog Browser into the editor.
This process is slightly different across platforms.

(UNIX) Middle-click a SuperBlock icon and drag it into an existing editor
window.

(Windows) Left-click a SuperBlock icon and drag it into an existing editor
window.

Make sure the editor window is visible before you start dragging.

Dragging SuperBlock Icons from the Catalog View
Dragging a SuperBlock from the Catalog view into an existing editor
window saves and closes the SuperBlock that was previously open in the
editor. The dragged object becomes the current SuperBlock being edited.

Dragging SuperBlocks and State Transition Diagram
Icons from the Contents View
Dragging an object from the Contents view copies it into the SuperBlock
being currently edited. If you drag a SuperBlock definition into the editor,
a SuperBlock reference to the definition is created instead.

Using the Drag and Drop Feature
Example 2-6 provides an example that lets you try the drag and drop
technique. If you do not currently have the cb_ex1.cat model loaded in
the Catalog Browser, return to Example 2-1 and load it. If you have no
editor window open, open one. Refer to the Opening a SuperBlock in an
Editor section of this chapter.

Example 2-6 Catalog Browser Drag and Drop Features

1. Expand the SuperBlocks folder in the Catalog view.

2. Select the top-level SuperBlock Discrete Cruise System in the
Catalog view. Using the process defined for your operating system,
drag the SuperBlock Discrete Cruise System to any SuperBlock
Editor window.

You have loaded the Discrete Cruise System SuperBlock into the
editor. It has three blocks.

Chapter 2 Catalog Browser

SystemBuild User Guide 2-20 ni.com

3. In the Catalog view of the Catalog Browser, select Discrete Cruise
System Open Loop SuperBlock. From the right pane, drag the
SuperBlock reference, Cruise Control System, into the editor.

The SuperBlock does not open. A reference is created, and it becomes
part of the diagram.

Updating the Catalog Browser Data from an Editor
When you modify a catalog item from the SystemBuild editor, changes are
not written to the catalog unless you change view to another object in the
same Editor window, close the editor window, load a file, or analyze a
model. There are several ways to force an update:

• In an editor, press <F5>, click the Update toolbar button, or select
File»Update.

• In the Catalog Browser, press <F5>, or select View»Update.

Save only works for items updated to the catalog (refer to the Saving Data
section).

Using the Tools Menu
Catalog Browser tools, as listed in the Tools menu, operate on the model
hierarchy. These tools are discussed in depth elsewhere:

• SuperBlock transformations are fully explained in Chapter 6,
SuperBlock Timing and Transformation.

• Component tools (Make, Edit, Unmake) are fully explained in
Chapter 16, Components.

• HyperBuild is discussed in the HyperBuild User Guide.

• AutoCode, the AutoCode code generation tool, is documented in the
AutoCode User Guide and AutoCode Reference.

• DocumentIt, the document generation tool, is explained in the
DocumentIt User Guide.

However, you can try some of them using the current catalog. Example 2-7
shows you how to use the transformation tool.

Chapter 2 Catalog Browser

© National Instruments Corporation 2-21 SystemBuild User Guide

Example 2-7 Transforming a SuperBlock

This example uses the editing techniques explained in the Modifying a
Catalog section.

1. In the Catalog view of the Catalog Browser, copy the continuous
automobile SuperBlock, and paste it into the catalog.

2. Rename the copy discrete automobile.

3. Select discrete automobile, and then select Tools»Transform.

The Transform SuperBlock dialog box appears.

4. From the Type combo box, select Discrete.

5. Enable Transform Initial Conditions.

6. Click OK.

The new SuperBlock appears in the SuperBlock hierarchy.

© National Instruments Corporation 3-1 SystemBuild User Guide

3
File and Configuration
Management

In Chapter 2, Catalog Browser, we discussed using the Catalog view of the
Catalog Browser. In this chapter we discuss File Management using the
File view of the Catalog Browser.

You can think of the File view in the Catalog Browser as an orthogonal view
of your model. All the same items exist, but rather than being associated
with a particular category, such as SuperBlocks, each item is associated
with a file.

The items in the File view exist at the granularity of the items in the Catalog
view of the Catalog Browser. For example, you can work with SuperBlocks
in the File view, but you cannot work with the blocks within a SuperBlock.
SuperBlocks are listed in the Catalog view, but the blocks that compose it
appear in the Contents view.

Configuration Management is an extension of file management. It is the
second major topic in the chapter.

File Management
In this section, we introduce you to a number of concepts and tasks
regarding file management in SystemBuild. We want you to understand the
following concepts:

• The difference between the Catalog view and the File view of a catalog

• The difference between loading and opening a file

• The role of the Untitled.sbd file

• The Current States of blank, New, Modified, Deleted, Moved, and
Overwritten

• That only one item with a given name can exist in a catalog at once

• When files containing items with duplicate names are opened, all of
those items are overwritten except one

Chapter 3 File and Configuration Management

SystemBuild User Guide 3-2 ni.com

In this section, we show you how to perform the following tasks:

• Putting New Items into the Untitled Default File

• Modifying an Item in a File

• Deleting an Item in a File

• Moving an Item from One File to Another

• Overwriting Items in a File

• Creating a New File

The following tutorial allows you to see the results. Notice that this entire
section is a “running” tutorial although we divide it into various subsections
and multiple examples. To avoid corrupting any examples or other files that
you may need to keep, we ask you to establish a new working directory that
you can delete at the end of the file management topic.

Putting New Items into the Untitled Default File
In Example 3-1, you create a new working directory, load an example file
into this directory, examine what happens in the File view, and see how the
file Untitled.sbd works in this environment. You also get to see how
SystemBuild allocates items to the Untitled.sbd file and how to save a
copy of it for future purposes.

Example 3-1 Loading a File and Working with the Default Untitled File

1. Create a new directory called fmlearning, and make it your current
working directory.

One method of changing the current working directory is using the
following command from the Xmath command area:

set directory ".../fmlearning"

where ... denotes the high-level part of your pathname. (The forward
/ works for all operating systems in Xmath.)

2. Copy a data file from the SystemBuild examples directory to your
current working directory. In the Xmath command area, type:

copyfile "$SYSBLD/examples/manual/cb_ex1.cat"

3. If SystemBuild is not already running, launch it.

4. In the Catalog Browser, select File»Load. When the Load dialog box
appears, select file cb_ex1.cat from your current fmlearning
working directory.

5. Click the FileView tab in the Catalog view of the Catalog Browser.

Notice that this view contains one file, Untitled.sbd.

Chapter 3 File and Configuration Management

© National Instruments Corporation 3-3 SystemBuild User Guide

6. Select Untitled.sbd.

Notice that all items from the Catalog view now appear in the Contents
view with the Current State showing New. Notice also that the
filename is shown in bold font rather than regular font.

Note As you will see later in this chapter, showing the filename in regular font indicates
that the contents of the file have not changed, and the file does not require saving.

7. Select File»Save.

SystemBuild requires you to specify a filename for the untitled file.
A dialog box appears for you to name the file.

Note With the untitled file, selecting File»Save is the same as selecting File»Save As.

8. Name the file cb_ex2.cat, and store it in the fmlearning directory.

Notice that the new filename appears in the File view, but the Contents
view is now empty. Untitled.sbd is selected, and the Contents view
is empty, indicating that no items are without an associated file.

9. Select cb_ex2.cat.

Notice that the Current State of the items in the Contents view is blank,
indicating that the contents in memory match the contents on disk.

10. Select View»Properties.

The Properties dialog box shows you when you modified the file and
whether it is under source control—this file is not.

As you have probably guessed by now, the Untitled.sbd file is always
shown in the File view, whether or not any items are associated with it.
You can think of this file as the “catch-all bucket” for items that need to
be allocated to a file. Any items not associated with another file are
automatically associated with this file.

Modifying an Item in a File
In this section, Example 3-2 illustrates the effect of modifying an item in a
file. You can see that SystemBuild alerts you when a file needs to be saved.

Example 3-2 Modifying an Item in a File

1. With the cb_ex2.cat file still selected in the File view, double-click
the continuous automobile SuperBlock to bring it up in an editor.

2. Change the font size of this SuperBlock, and close that editor.

Chapter 3 File and Configuration Management

SystemBuild User Guide 3-4 ni.com

Returning to the File view of the Catalog Browser, notice that the
Current State now says Modified. Notice also that the cb_ex2.cat
filename now appears in bold, indicating that one or more items in this
file has been changed, and the file needs to be saved.

3. With the cb_ex2.cat file still selected in the File view, select
File»Save.

Notice that Current State in the Contents view is blank for all items,
indicating that the contents of the file match the contents of the catalog.

Deleting an Item in a File
In this section, Example 3-3 illustrates the effect of deleting an item from a
file. You can see that SystemBuild alerts you when the file needs to be
saved.

Example 3-3 Deleting an Item from a File

1. With the cb_ex2.cat file still selected in the File view, select the
SuperBlock mux3 in the Contents view.

2. Open the Edit menu.

Notice that the Delete menu item is not active.

Note SystemBuild does not allow you to delete items in the File view.

3. Click the Catalog View tab.

4. Select the SuperBlocks folder.

5. In the Contents view, select the mux3 SuperBlock.

6. Select Edit»Delete.

The mux3 SuperBlock is deleted from the Contents view.

7. Click the FileView tab to return to the File view.

Notice that the SuperBlock remains in the Contents view, but its
Current State is Deleted. Notice also that the filename is now in bold
font, indicating that its contents do not match the contents in memory
(needs saving).

8. With the cb_ex2.cat file selected, select File»Save.

The filename is again shown in regular font, and the Current State of
every item is again blank.

Chapter 3 File and Configuration Management

© National Instruments Corporation 3-5 SystemBuild User Guide

Moving an Item from One File to Another
In this section, Example 3-4 illustrates moving an item from one file to
another without affecting what is in memory.

Example 3-4 Moving an Item from One File to Another

The Catalog Browser is in the File view with the cb_ex2.cat file selected.

1. In the Contents view, select the Cruise Control Logic STD.

2. Select Edit»Cut.

You can find Cut on the Shortcut menu by right-clicking as well.

3. Select the Untitled.sbd filename.

Notice that the file has no initial contents.

4. Select Edit»Paste.

Notice that the cb_ex2.cat file is shown in bold, indicating that its
file contents do not match the contents in memory, and it needs to be
saved. Notice, too, that Untitled.sbd is shown in bold font, and its
contents now include the new STD.

5. Select the cb_ex2.cat file again.

The Cruise Control Logic STD is still listed, but its Current State is
Moved.

6. Save cb_ex2.cat again.

A dialog box asking you if you want to retain the overwritten (moved)
file appears. This gives you the opportunity to keep the item that you
moved to another file.

7. Answer No.

Overwriting Items in a File
In this section, Example 3-5 illustrates what happens when you open a file
that contains items with the same name as items already in the catalog. The
first part of this example is just set up so that you can more easily follow
the points being made.

Chapter 3 File and Configuration Management

SystemBuild User Guide 3-6 ni.com

Example 3-5 Overwriting Items in a File

1. Open the continuous automobile SuperBlock in an editor, and
change the outputs to 3. Close the editor.

This SuperBlock now has three inputs and three outputs.

2. Open the continuous automobile w IA SuperBlock in an editor,
and change the inputs to 2. Close the editor.

This SuperBlock now has two inputs and two outputs.

3. Select View»Update to update the Catalog Browser.

You would expect the two items that you directly modified to show that
status, and they do. However, you might not expect the Discrete Cruise
System also to be marked Modified. It is the parent SuperBlock to
continuous automobile. Therefore, it also is modified.

4. Go to the Catalog view, and delete all items associated with file
cb_ex2.cat except the two that you modified directly.

5. Return to the File view, and save cb_ex2.cat to clean up what is in
the File view.

Other than the Xmath partition, you now have two SuperBlocks in
cb_ex2.cat, and both have been modified in a clearly identifiable
manner from their original versions.

6. Select File»Open, and then select file cb_ex1.cat from your
working directory.

Since items in the two files have duplicate names, a Warning dialog
box opens that asks if you first want to replace one of the current
SuperBlocks.

7. Click Yes for the continuous automobile SuperBlock.

8. Click No for the continuous automobile w IA SuperBlock.

Notice that the cb_ex2.cat file remains selected in the File view.
It still contains two SuperBlocks and the Xmath partition, but the
SuperBlock that you replaced, as well as the Xmath partition, have
their Current Status fields marked Overwritten.

9. Now select the file cb_ex1.cat in the File view.

Notice that continuos automobile w IA has its Current Status field
marked Overwritten.

10. Select File»Save to save the file in its modified form.

The Retain Item dialog box comes on view. It asks you if you want to
retain the overwritten (original) version of continuos automobile w IA.

Chapter 3 File and Configuration Management

© National Instruments Corporation 3-7 SystemBuild User Guide

11. Answer No.

In the Contents view, notice that the version of this SuperBlock has two
inputs and two outputs. In the File view, observe that this SuperBlock
is associated with file cb_ex2.cat.

12. Bring up the Xmath Commands window.

The log area contains a log item concerning the replaced SuperBlock.

The important point to understand is that only one version of an item with
a given name can exist in a SystemBuild model at one time. If you open two
or more files with conflicting names, then SystemBuild asks you to select
the one you want to use. Then the item in the file that you did not use is
overwritten. When you save the file that contained the element that was
overwritten, you have the opportunity to save the original version of the
element in that file.

Creating a New File
Example 3-6 shows you how to create and populate a new file. In this
section, we demonstrate the principle of one item with the same name in the
model from a different perspective.

Example 3-6 Creating a New File

1. Select File»New»File.

From the File view, note that SystemBuild created Untitled2.sbd.

2. Select Untitled2.sbd.

Notice that the file is empty.

3. Select cb_ex1.cat again.

4. Select the Cruise_Control_Logic STD in the Contents view.

5. Click the Edit menu, and examine the active menu items.

Notice that Copy is not active.

6. Select Edit»Cut.

7. Select Untitled2.sbd.

8. Select Edit»Paste.

The Cruise_Control_Logic STD is shown as a New item in this file,
and the file name is shown in bold, indicating that it needs to be saved.

9. Select cb_ex1.cat again.

The Cruise_Control_Logic STD is shown as a Moved item in this file,
and the file name is shown in bold, indicating that it needs to be saved.

Chapter 3 File and Configuration Management

SystemBuild User Guide 3-8 ni.com

The Untitled2.sbd file—and others created the same way—functions
just like Untitled.sbd. It is a place holder until you populate it explicitly.
You cannot copy items to this file, however, because SystemBuild allows
only one item with the same name in a model, and a copy would create two
items with the same name. If you want a copy of an item in a file, copy the
item directly, so that it has a different name, and then you can move the
copy to the new file.

Note At this point, you are formally done with using the fmlearning directory and its
contents. Delete it if you wish.

Saving All Files
If you have several files open and have not moved or overwritten multiple
elements within the files, you can use the File»Save All command, which
simply saves all elements back into the files with which they are associated.
In more complex situations, you might want to save each file individually.

Saving Xmath Partitions
You can save Xmath data at the level of a partition. If you are opening
several files, the last file opened gets ownership of any Xmath partition that
the files have in common, including Main. If you have variables with the
same names, the last one loaded is used. For example, if two files each
have a Main partition with a variable t, the first t loaded is overwritten.
Otherwise, the data is merged. You receive no warnings from Xmath about
this. Therefore, we encourage you to store Xmath data in partitions other
than Main so that you can retain data that is appropriate to your models
when you have more than one file open at once.

Configuration Management
Configuration management in SystemBuild is simply an extension of file
management. Configuration management provides an interface to your
configuration management tool through the Versioning menu on the
Catalog Browser. Currently, SystemBuild supports the following tools:

• ClearCase

• PVCS

• Microsoft Visual SourceSafe (Windows only)

In this section, we provide preparation details for using your CM tool in
SystemBuild. Then we teach you how to use the interface to your tool, but
we make no attempts to teach you how to use your tool. We assume that you

Chapter 3 File and Configuration Management

© National Instruments Corporation 3-9 SystemBuild User Guide

know how to use and have a thorough understanding of the configuration
tool that interfaces to SystemBuild. We assume that you know what various
operations, such as checkin and checkout, mean for the tool that you are
using.

Preparing to Use a CM Tool with SystemBuild
If you plan to use the configuration management feature, we assume that
you have one of the tools above installed on your computer and that it is
functioning on your computer (refer to the System Administrator Guide for
your operating system). To use the CM tool with SystemBuild, a few
additional steps are necessary.

SystemBuild uses the Sysbld.ini file found in $SYSBLD/etc to resolve
the CM tool to be used when you launch CM from within SystemBuild.
More specifically, SystemBuild uses the entry called CMToolConfig.
Its use is operating-system dependent. Appropriate settings are provided.
Refer to Chapter 17, SystemBuild Customization, for additional
information about using this file.

Windows Operating Systems
Set CMToolConfig to the string "SCCI". SystemBuild figures out from
the PC registry which CM tool to use and uses the correct one.

UNIX Operating Systems
Set CMToolConfig to the appropriate case-sensitive string:

• "ClearCase.pl"

• "PVCSPCLI"

• "FileRW.pl"

If you are using PVCS, you need to perform some additional functions.

To ensure that PVCS works on UNIX operating systems:

1. Ensure that the directory where PVCS is installed is in your path.

2. In your .cshrc file, source the vm65cshrc file, along with its path.

For example, your .cshrc file contain a line that looks like:

source ./pvcs/vm65cshrc

3. Make a copy of Sysbld.ini, and place it in your startup directory.

4. Change the CMToolConfig entry from "ClearCase.pl" to
"PVCSPCLI".

Chapter 3 File and Configuration Management

SystemBuild User Guide 3-10 ni.com

5. Before you start PVCS from SystemBuild, start PVCS standalone.
Start a project, specify the directories in which the source files are
located, and exit.

You have to perform this step for each project that you create in PVCS.

6. Start SystemBuild, and start CM from SystemBuild.

A dialog box prompts you to specify the project database location.
When you specify the location, you can access those files and perform
checkin and checkout operations directly from SystemBuild.

Getting Messages from Your CM Tool
Often a CM tool operation delivers a text message when the operation
completes successfully or when an error occurs. When using CM within
SystemBuild, messages are written to the log area of the Xmath Commands
window. It is a good idea to check the log area after each operation.

Connecting to Your Configuration Management Tool
In all cases, you must connect to your CM tool before you can perform
other CM operations through SystemBuild. Therefore, this is the only
option initially active.

To start any configuration management activity through SystemBuild,
select Versioning»Connect to CM.

If you are a PVCS user, a dialog box that asks you to input the project
database and the source location comes on view. You should be aware that
files specified in the source location provided in this dialog box work fine
in terms of checking in and checking out within SystemBuild. Files not in
the source location or its subdirectories show up as not under source control
within SystemBuild.

At this point, the active items in the Versioning menu are Disconnect from
CM and Launch CM Tool.

Chapter 3 File and Configuration Management

© National Instruments Corporation 3-11 SystemBuild User Guide

Opening a File
The next step is to open a file. The file should be either already under
configuration management control or in a working directory from which it
can be placed under control. In ClearCase, the file should be in a versioned
object base (VOB). In PVCS or SourceSafe, it should be in your project
workfile location.

Note If you are using Windows 2000 operating system, it has additional security
measures. If you wish to open a file that someone else owns, you need to have administrator
privileges.

To open a file, select File»Open, and then select the file that you want to
view from the Open dialog box.

The file is now listed in the File view. When you select the file, additional
items on the Versioning menu are now active. These options depend upon
whether or not you opened a file that is already under configuration
management. The icon next to the file indicates the CM status of the file:

Icon Description CM status

White background File not under configuration control

Gray background File under configuration control

either
of
above

No check on icon File not checked out of CM system

Black check on icon File is checked out

Red check on icon File is checked out and reserved to
you alone

Chapter 3 File and Configuration Management

SystemBuild User Guide 3-12 ni.com

Putting a File Under Configuration Control from SystemBuild
If you opened a file that is not under configuration management, the
additional menu option that becomes active is Add to Source Control.

To put a new file under configuration management control, complete the
following steps:

1. Select the file that you wish to put under configuration control in the
File view.

2. Select Versioning»Add to Source Control.

A configuration-tool-dependent dialog box appears that allows you to
accomplish this task.

Using Other Configuration Management Options
After you have opened a file under configuration control, the following
additional menu options become active when you have that file selected in
the File view:

• Get Latest Version

• Check Out

• Show History

Refer to the Problems with Extension Names in Different Applications
section.

• Remove from Source Control

• Version Properties

• Refresh Status

When you have a file checked out, you can make any changes to it that you
wish. The following additional menu items become active:

• Check In

• Undo Check Out

Problems with Extension Names in Different Applications
On the Windows platform, file extensions are usually registered with
certain applications that can be used to open these files (for example, .doc
indicates that the file is a Word file, .txt means it is a text file, and so
forth). If the file extension does not correspond to the expected file type,
certain operations may result in unexpected behavior.

Chapter 3 File and Configuration Management

© National Instruments Corporation 3-13 SystemBuild User Guide

On certain PCs, files with the .cat file extension, the standard extension
for Systembuild catalog files, are registered as security catalogs. Trying to
view such files by their default viewers causes problems. When using
Visual SourceSafe, this anomalous behavior is exhibited when you try to
view a .cat file from within the History dialog. This behavior is intrinsic
to certain Windows applications and is not controlled by MATRIXx. Use
caution when trying to open or view files using default Windows viewers
when the file is different from the registered type.

Additional Resources
If the meaning of these topics is not clear, refer to the MATRIXx Help
and/or consult your configuration management tool documentation
because many of these items mean something different in each tool.

To get the MATRIXx Help for the Versioning menu, complete the following
steps:

1. Select Help»Topics from the Catalog Browser.

2. Click the Versioning menu in the hypertext topics list.

© National Instruments Corporation 4-1 SystemBuild User Guide

4
SuperBlocks

The SuperBlock Editor provides an interactive design environment for
creating and editing block diagrams. All block diagrams start with a
SuperBlock that contains one or more blocks. SystemBuild allows you to
edit up to 20 SuperBlocks simultaneously, each displayed in a separate
editor window. Each editor window can display up to 199 blocks. In
addition, the SuperBlock Editor provides easy access to analysis and
simulation tools.

As discussed in Chapter 2, Catalog Browser, the Catalog Browser manages
the status and interrelationships of SuperBlocks, blocks, and all other
objects in the catalog. You initiate each editing session from the Catalog
Browser. From it you can create and edit a new SuperBlock or open an
existing SuperBlock and modify it. This chapter focuses on how to create
and edit SuperBlocks.

The major topics in this chapter are as follows:

• SuperBlock Hierarchies

• Creating SuperBlocks

• Creating a SuperBlock Reference

• Renaming SuperBlocks

• Using File SuperBlocks

SuperBlock Hierarchies
You can display up to 199 blocks in a SuperBlock Editor window.
Although you can view the entire diagram by scrolling the Editor window,
it may be inconvenient. SystemBuild has a number of special features for
creating a modular hierarchical system.

SuperBlocks provide a way to simplify large block diagrams or to group
blocks that have a common purpose or common properties. The
SuperBlock capability makes hierarchical systems and subsystems
possible.

Chapter 4 SuperBlocks

SystemBuild User Guide 4-2 ni.com

In the context of the SuperBlock hierarchy, there are two types of
SuperBlocks: a top-level SuperBlock and a SuperBlock reference. A
top-level SuperBlock has no parent. Any SuperBlocks it contains are its
children. A single SuperBlock can be used in multiple models within a
catalog. Each instance is called a reference. A change made in the original
top-level SuperBlock propagates to all references.

SuperBlocks do not perform direct functional actions. They are hierarchical
entities that define the timing properties for functional blocks (and
optionally other SuperBlocks) below them in the hierarchy. SuperBlock
timing methods are: continuous, discrete, trigger, and procedure. All
non-continuous blocks have type-specific timing attributes. SuperBlocks
also define the timing attributes of SystemBuild subsystems. Primitive
blocks derive their timings from the parent SuperBlock. Refer to Chapter 6,
SuperBlock Timing and Transformation, for more on SuperBlocks and
timing.

The operation of SuperBlocks in hierarchies is illustrated in Figure 4-1,
which shows how SuperBlocks may be nested, one within another, each
containing functional blocks.

When a SuperBlock icon appears in a block diagram, the icon represents an
instance of (or a call to) a SuperBlock with that name. Thus, any change in
a SuperBlock goes into effect in all the places it is referenced. Figure 4-1
shows the SuperBlock ubiquitous occurring at different levels in a
hierarchy.

Chapter 4 SuperBlocks

© National Instruments Corporation 4-3 SystemBuild User Guide

Figure 4-1. SuperBlock References in a SuperBlock Hierarchy

Creating SuperBlocks
You can create SuperBlocks in several different ways, which are explained
in this section.

Creating a New SuperBlock from the Catalog Browser
We discussed creating a new SuperBlock from the Catalog Browser in the
previous chapter and include it here for completeness. Refer to the Creating
a New SuperBlock section of Chapter 2, Catalog Browser, for the detailed
procedure.

Chapter 4 SuperBlocks

SystemBuild User Guide 4-4 ni.com

Making a New SuperBlock from Existing Blocks
You can create a new SuperBlock by grouping existing functional blocks
and SuperBlocks in the SuperBlock Editor.

Complete the following steps to create a SuperBlock from existing blocks:

1. With the existing SuperBlock open in the SuperBlock Editor, select the
blocks that you want to move to a subhierarchy (the children of the
SuperBlock).

2. Select Edit»Make SuperBlock.

The new SuperBlock is given the default name _makesb#, where # is
a system-supplied digit that ensures a unique name. The child
SuperBlock has the timing properties of the current parent
SuperBlock.

Note By definition, the view of the SuperBlock that appears in the original diagram is a
reference SuperBlock. Double-click this icon to bring up the SuperBlock itself in an editor
window.

Chapter 4 SuperBlocks

© National Instruments Corporation 4-5 SystemBuild User Guide

Complete the following steps to ungroup the blocks:

1. Select the SuperBlock in an editor window.

2. Select Edit»Expand SuperBlock.

Note You cannot use the Expand SuperBlock command within a container block. For
a description of container blocks, type help container in the Xmath command area.

To display the contents of the SuperBlock in the SuperBlock icon, complete
the following steps:

1. Select the SuperBlock.

2. Type s.

Typing s a second time enlarges the contents. Typing s another time
returns the view to the SuperBlock icon.

Creating a Copy of a SuperBlock
Copying a SuperBlock creates a new SuperBlock also. You can create a
copy of a SuperBlock in the SuperBlock catalog from the Catalog Browser
or the editor.

Creating a Copy with Copy and Paste
From the Catalog Browser, you can copy an existing SuperBlock, paste it
into the current catalog, and rename it.

Complete the following steps to copy a SuperBlock from the Catalog
Browser:

1. Select an existing SuperBlock.

2. Right-click to raise the Shortcut menu, and select Copy.

3. Right-click to raise the menu again, and select Paste.

The new SuperBlock is named Copy of sbName, where sbName is
the name of the selected SuperBlock. The original SuperBlock remains
in the hierarchy and the copy initially appears as a top-level
SuperBlock in the Model hierarchy. This process is the following
figure.

Chapter 4 SuperBlocks

SystemBuild User Guide 4-6 ni.com

4. To rename the copy from the Catalog Browser, select it, and then select
Edit»Rename.

The Rename dialog box appears.

5. Input the name you wish to use, and click OK.

Notice that Rename all references is enabled by default in this dialog
box. Usually you want to leave it enabled.

Creating a Copy by Modifying the SuperBlock
Properties
You can edit a SuperBlock properties if the SuperBlock is currently
displayed in an editor.

To create a copy of a SuperBlock from the SuperBlock properties dialog
box, complete the following steps:

1. Click the SuperBlock ID bar to raise the SuperBlock Properties dialog
box. Refer to Figure 2-3, SuperBlock Properties Dialog Box.

2. Change the SuperBlock Name field in this dialog box.

A copy of the current SuperBlock with the new name appears in the
catalog. The original definition and any references to it are unaffected.

Defining SuperBlock Properties
In this section, we discuss SuperBlock properties generally and then
discuss the dialog box that you use to define them.

Select and copy: Paste the copy into the catalog:

Chapter 4 SuperBlocks

© National Instruments Corporation 4-7 SystemBuild User Guide

SuperBlock Properties
All SuperBlocks have the following properties:

• A SuperBlock must have a unique name (within the current catalog).
A SuperBlock name is its sole method of identification.

• A SuperBlock must contain at least one block. The blocks within a
SuperBlock can be basic functional blocks or references to different
SuperBlocks, components, DataStores, or State Transition Diagrams
(STDs).

• A SuperBlock hierarchy is a global object (within a catalog). Therefore
its definition can be reused by calling it from within other SuperBlocks
in your catalog. A block that calls a SuperBlock definition is called a
SuperBlock reference to, or instance of, that SuperBlock hierarchy.

• A SuperBlock definition that is not referenced elsewhere in the catalog
is called a top-level SuperBlock.

• SuperBlock outputs cannot be directly connected to its inputs.
The output signal must first pass through another block (refer to
Figure 4-2).

Figure 4-2. Legal and Illegal Connections

Using the SuperBlock Properties Dialog
After you create a SuperBlock, you must define its properties through the
SuperBlock Properties dialog. If you create a block from existing blocks
(refer to the Making a New SuperBlock from Existing Blocks section), you
also create a reference to the SuperBlock in the original diagram. You also
must define the properties of the reference. The SuperBlock Block dialog
box serves this purpose (refer to Figure 4-4).

The SuperBlock Properties dialog box first appears when you create a new
SuperBlock from the Catalog Browser (refer to the Creating a New
SuperBlock section). When you are editing a SuperBlock, you can raise this

Legal Not Allowed

SuperBlock SuperBlock

Chapter 4 SuperBlocks

SystemBuild User Guide 4-8 ni.com

dialog box by clicking the SuperBlock ID bar, the strip of SuperBlock
information that appears below the Editor toolbars and above the diagram
work area, or by selecting File»SuperBlock Properties.

Refer to Figure 2-3, SuperBlock Properties Dialog Box, as needed as we
describe the SuperBlock Properties dialog box.

The Name, Inputs, and Outputs fields are always visible. A SuperBlock
must have a unique name that starts with an alpha character, is less than
32 characters long, and contains no punctuation characters (such as
semicolons, periods, and so forth). If you use them, SystemBuild replaces
them with underscores.

A SuperBlock is not required to have inputs and outputs. When they exist,
however, each represents a signal, sometimes called a data channel, for the
current block diagram. The number of inputs and the number of outputs are
independent. They do not have to match.

The OK, Cancel, and Help buttons appear at the bottom of the form. OK
accepts all changes and closes the dialog box. Cancel disregards all changes
and closes the dialog box. Clicking Help opens the MATRIXx Help for the
SuperBlock Properties dialog box.

The SuperBlock Properties dialog box has the following six tabs:
Attributes, Code, Inputs, Outputs, Document and Comment. The remainder
of this section presents an overview of the contents of each tab.

Attributes Tab
The Attributes tab allows you to set the timing attributes of the SuperBlock.
These attributes can be inherited by SuperBlocks lower in the hierarchy.

Type The default type is continuous.

Continuous Continuous modeling is specified for the
processes of the SuperBlock. Refer to the
Continuous SuperBlocks section of Chapter 6,
SuperBlock Timing and Transformation, for
additional information.

Chapter 4 SuperBlocks

© National Instruments Corporation 4-9 SystemBuild User Guide

Discrete SuperBlocks may run in discrete time, either
as free-running or enabled. The Sample
Period, Sample Skew, and Enable Signal fields
are active for this option. If you specify an
enable signal, the block executes only when
the enable signal is asserted. Refer to the
Discrete SuperBlocks section of Chapter 6,
SuperBlock Timing and Transformation.

Trigger The SuperBlock is triggered for execution
(one-shot) by a specified trigger signal. Refer
to the Triggered SuperBlocks section of
Chapter 6, SuperBlock Timing and
Transformation.

Procedure Procedure SuperBlocks allow users to
implement standalone procedures. They may
inherit their timings from a parent (standard
procedures) or run untimed (asynchronous).
Possible procedure classes are standard,
startup, background, interrupt, macro, and
inline. Refer to the Procedure SuperBlocks
section of Chapter 6, SuperBlock Timing and
Transformation.

Input
Naming

Controls the display of labels in the block diagrams in the
SuperBlock subhierarchy. By default, all labels are inherited
from the parent SuperBlock. If you select Enter Local Label
Names, you can input local names on other tabs, and they are
used. If you are specifying a top-level SuperBlock, you must
select Enter Local Label Names if you wish to specify labels
on the Inputs tab.

Group
ID

Optional processor group ID for the current SuperBlock
hierarchy. Disabled if the type is continuous, enabled
otherwise. Default is 0. Refer to the Assigning SuperBlocks to
Additional Subsystems section of Chapter 8, Simulator
Basics, for an in-depth discussion.

Chapter 4 SuperBlocks

SystemBuild User Guide 4-10 ni.com

Code Tab
The Code tab is enabled when the SuperBlock type is procedure, and the
procedure class is macro. You specify your macro in the editing area of this
tab. You can type directly in the editing area, or you can select an editor
from the Editors pulldown menu, and click Launch to use the editor
directly. When you exit the editor, the contents appear in the editing area of
the tab.

To change the default text editor, refer to the Default Text Editor section of
Chapter 17, SystemBuild Customization.

Inputs Tab
An input is a data channel or signal. The Inputs tab gives you the
opportunity to add a label or name the signal and specify its data type.

Input
Label

The text you enter in the Input Label field appears in the
block diagram if you select Enter Local Label Names in
the Input Naming field on the Attributes tab. You can use
!"#$%'*+,-./>=<?@^ and European characters (ASCII
codes up to 128).

If you select Inherit Higher-Level Names in the Input
Naming field on the Attributes tab, the parent labels are
propagated. This field is inactive for this case.

In either case, the labels appear in the diagram.

Labels also appear in the analyze output listing and the
DocumentIt documentation. The label you specify on the
Inputs tab is also displayed on the Document tab.

Input
Name

You can specify a name for the input signal. Do not use
punctuation characters (!"#$%&'*+,-./>=<?@^():;[]\‘{}~);
invalid characters are mapped to underscores.

This name is associated with the signal in the AutoCode
code listing. It has no impact on the block diagram. Refer to
the AutoCode User Guide.

Chapter 4 SuperBlocks

© National Instruments Corporation 4-11 SystemBuild User Guide

Outputs Tab
The Outputs tab is read-only. SuperBlock output labels appear in output
order, and the name assigned is the name (if any) of the functional block
the signal last passed through, followed by the number of the signal (if there
were multiple outputs from that block).

Document Tab
The Document tab displays a spreadsheet that allows you to describe the
input signal by assigning text or values to each field. The Input Label and
Input Name fields are linked to the Inputs tab. A change in this location
occurs there as well. Information on this tab has no simulation or code
generation effect. It is extracted to create documentation when the
DocumentIt document generation tool is used.

Input
Data Type

This field allows you to assign a data type for each input.
Because data types are normally set in functional blocks,
these settings may be ignored or overridden in the analysis
phase. They will be used if this is a top-level SuperBlock or
if the SuperBlock type is procedure.

(UNIX) To assign a data type, click in the field. A menu of
types appears. (Windows) Data types are in a combo box.
Click the triangle beside the field to display the menu. Refer
to the Specifying Data Types section of Chapter 5, Blocks.

Input
Radix

This field is used solely for fixed-point data. If the Input
Data Type is set to a signed or unsigned type, you can
specify an input radix. Refer to Chapter 15, Fixed-Point
Arithmetic.

Input
UserType

If you want to specify a user-defined type for this input,
specify it in this field. Refer to the User-Defined Data Types
(UserTypes) section of Chapter 15, Fixed-Point Arithmetic.
As with datatypes, the type may not be relevant for
functional blocks within the diagram. However, procedure
SuperBlocks lower in the hierarchy can inherit these values.

Input
Scope

The input scope can be set to either local (the default) or
global. It is only pertinent when the current SuperBlock type
is procedure and you are generating code. The scope
determines whether data in procedure SuperBlocks is global
or local in the generated code. Refer to the AutoCode
Reference for details on signal scoping.

Chapter 4 SuperBlocks

SystemBuild User Guide 4-12 ni.com

Comment Tab
The Comment tab is an editing field. You can attach a comment that applies
to this SuperBlock and its subhierarchy, if applicable. The contents of this
field also may be accessed by DocumentIt. For an explanation of the
Comment tab, click Help in the SuperBlock properties dialog, and then
follow the hypertext link to the Comment tab discussion. To change the
default comment editor, refer to the Comment Editor section of Chapter 17,
SystemBuild Customization.

Creating a SuperBlock Reference
A SuperBlock definition is saved as part of the catalog hierarchy.
References are local instances of a SuperBlock. SuperBlock instances are
represented by a block. Because the definition of the SuperBlock is
elsewhere, you can only edit parameters local to the block, such as the
name, labeling, and icon appearance. The SuperBlock reference dialog box
is shown in Figure 4-4. Compare this to the SuperBlock Properties dialog
box in Figure 2-3, SuperBlock Properties Dialog Box. If the SuperBlock is
currently open in the editor, you can edit the SuperBlock properties. Any
changes are global and affect the model at every instance.

You can form a SuperBlock reference from either the Catalog Browser or
an editor.

Caution If a SuperBlock definition is removed from the catalog, references to it remain
in the block diagram connected as before, but all information provided by the deleted
definition is lost. This means the SuperBlock reference reverts to the default state (a
continuous SuperBlock with default values). This is also true if a definition is renamed
but references to it are not. Refer to the Renaming SuperBlocks section. To create valid
references in this situation, you must create a new SuperBlock definition with the same
name or rename the references to refer to valid SuperBlocks.

Creating a Reference from the Catalog Browser
If a SuperBlock exists in the catalog, you can create an instance by
dragging the SuperBlock from the Contents view and dropping it in the
editor where you are editing the SuperBlock in which the reference is to
exist.

Chapter 4 SuperBlocks

© National Instruments Corporation 4-13 SystemBuild User Guide

To create a reference from the Catalog Browser, complete the following
steps:

1. Click the SuperBlocks folder in the Catalog view to view all the
SuperBlocks in the current catalog in the Contents view.

2. From the Contents view (the right side), select a SuperBlock icon and
drag it into the SuperBlock being currently edited.

(UNIX) Select and drag with the middle mouse button. (Windows) Use
the left mouse button.

When you drop the reference, a SuperBlock block appears in the
editor, as shown in Figure 4-3.

Figure 4-3. Drag from the Catalog Browser Contents View, Drop in the Editor

Chapter 4 SuperBlocks

SystemBuild User Guide 4-14 ni.com

Creating a Reference from the Editor
To create a reference from the editor, complete the following steps:

1. Double-click in empty space to raise the Palette Browser, and select the
SuperBlocks palette.

2. From the SuperBlocks palette, drag the SuperBlock icon into the
editor. (UNIX) Use the middle button. (Windows) Use the left button.

The SuperBlock block icon shows an undefined sample period by
default.

3. Select the SuperBlock block icon, and press <Enter> or <Return>.

The SuperBlock Block dialog box opens. Refer to Figure 4-4.

4. If you want to reference an existing SuperBlock, supply the Name of a
SuperBlock present in the catalog, its Instance Name (optional), any
other parameters that you wish to enter, and press <Enter> or
<Return>.

The block timing attributes are taken from the referenced SuperBlock.
The SuperBlock reference name is the name of the SuperBlock,
followed by the name of the instance (if any) in parentheses.

5. If you want to leave the SuperBlock reference undefined, put at least
one primitive block in it as a placeholder block. It does not have to be
connected to anything.

Defining the Reference SuperBlock Properties
The SuperBlock Block dialog, also referred to as the SuperBlock Reference
or Instance dialog, controls information specific to an instance of a
SuperBlock within a block diagram.

To view the SuperBlock Block dialog box, select a SuperBlock icon and
press <Enter> or <Return>. Refer to Figure 4-4.

Chapter 4 SuperBlocks

© National Instruments Corporation 4-15 SystemBuild User Guide

Figure 4-4. SuperBlock Block Dialog Box that References an Existing SuperBlock

The following fields appear on the dialog box at all times:

Name The name field contains the name of the SuperBlock
definition. If this is a new instance (a SuperBlock icon pulled
from the Palette Browser) the default name is _SB. You may
use spaces or underscore characters as word separators in
SuperBlock names. Use caution, however, in employing
spaces because processes other than MATRIXx might remove
or replace space characters arbitrarily.

When you enter a name, the system checks to see if the named
SuperBlock exists in the catalog. If it does, a reference is
made and the undefined SuperBlock block icon becomes an
instance of the named SuperBlock. When the catalog is
updated, the reference appears in the hierarchy. If it does not
exist, the block is given the name, but it remains undefined
and does not appear in the hierarchy.

Chapter 4 SuperBlocks

SystemBuild User Guide 4-16 ni.com

The SuperBlock Block diagram has Parameters, Inputs, Outputs,
Comment, Icon, and Display tabs. The Parameters tab is disabled. Fields in
the other tabs behave the same as the equivalent tabs on functional blocks.
Refer to the Block Dialog Box Fields section of Chapter 5, Blocks.

The single exception is found on the Display tab. If enabled, the Propagate
Label checkbox dictates that labels from the parent SuperBlock are
propagated to child SuperBlocks in the subhierarchy and that signals
passing through the SuperBlocks pass the reference labels to the blocks that
follow.

Renaming SuperBlocks
The procedures for renaming SuperBlocks are simple and intuitive. The
consequences of renaming SuperBlocks is the primary subject of this
section.

Replacing a SuperBlock with Catalog Browser Rename
Complete the following steps to rename a SuperBlock from the Catalog
Browser:

1. Select the SuperBlock.

2. Select Edit»Rename, or right-click to raise the Shortcut menu, and
select Rename.

Inputs
and
Outputs

If the Name field contains the default name or specifies the
name of a SuperBlock that does not exist in the current
catalog, you can specify inputs and outputs.

If this is a reference to an existing SuperBlock, the number of
inputs and outputs cannot be altered.

ID The block ID of the SuperBlock block icon.

Instance
Name

You can supply a local name for this reference. If an instance
name is used, it is appended to the SuperBlock name field and
surrounded by parentheses in the diagram. For example, if
you give a reference to a SuperBlock named System the
instance name variation1, the name above the SuperBlock
reference is System (variation1).

Xmath
Partition

Use this field to specify the name of an Xmath partition that
this SuperBlock instance is to use for loading and saving data.

Chapter 4 SuperBlocks

© National Instruments Corporation 4-17 SystemBuild User Guide

Because the Catalog Browser operates on a global level, renaming a
SuperBlock from the Catalog Browser results in the destruction of the
original SuperBlock.

• If you rename a SuperBlock and enable Rename All References in
the Rename dialog box, SystemBuild gives the specified name to the
SuperBlock definition and all references to it. The original SuperBlock
is removed from the catalog. Figure 4-5 shows this concept, where the
SuperBlock ubiquitous has been renamed to U1.

Figure 4-5. Renaming a SuperBlock and All References

• If you rename a SuperBlock and do not rename references, a copy of
the original SuperBlock with the new name appears at the top-level of
the SuperBlock hierarchy. All references to the original SuperBlock
retain the old name but become undefined. They do not appear in the
catalog. Figure 4-6 shows the effect of ubiquitous being renamed
to Z1. Although the undefined SuperBlocks do not appear in the
catalog, they remain in the block diagram, and they are still named
ubiquitous.

Original catalog Catalog after all references are renamed

Chapter 4 SuperBlocks

SystemBuild User Guide 4-18 ni.com

Figure 4-6. Renaming a SuperBlock Without Renaming References

Renaming SuperBlocks in the Editor
The cases below deal with renaming a SuperBlock and renaming a
SuperBlock reference from the editor.

• If you rename a SuperBlock from the SuperBlock Properties dialog
box (refer to Figure 2-3, SuperBlock Properties Dialog Box), you
create a copy of the original SuperBlock with a new name (refer to the
Creating a Copy by Modifying the SuperBlock Properties section). If
the renamed SuperBlock is properly defined it becomes a top-level
SuperBlock when you update the catalog. The original SuperBlock
that you renamed and its position in the hierarchy are unaffected.

Note This method of renaming provides no opportunity to rename all references to the
SuperBlock.

• When you change the Name field from a reference SuperBlock Block
dialog box (refer to Figure 4-4), only that block is renamed. If the
renamed SuperBlock exists in the catalog, the new name appears in the
catalog hierarchy when you update the catalog. If the renamed
SuperBlock does not exist in the catalog, the renamed SuperBlock
does not appear in the catalog until you define it properly.

Original catalog Catalog after SuperBlock is renamed

Chapter 4 SuperBlocks

© National Instruments Corporation 4-19 SystemBuild User Guide

Using File SuperBlocks
The File SuperBlock is a useful construct in environments where large
system models are created by several engineers working independently.
With File SuperBlocks you can create a high-level model where part of
the hierarchy is specified in an external file and is represented by File
SuperBlock icons in the SystemBuild diagrams.

To create File SuperBlocks, complete the following steps:

1. Identify parts of your system that can be logically grouped as
standalone entities.

The boundaries might be the physical components of your system,
for example, engine, transmission, drive train, or suspension.

2. Save the SuperBlocks associated with each entity into a separate file.

Both binary and ASCII files are acceptable. Extending the concept
from step 1, your model might contain the following files:

engine.cat, transmission.cat, drive_train.cat, and

suspension.cat.

To reference SuperBlocks from a file in other parts of the your model,
complete the following steps:

1. From the Xmath Commands window, enter an setsbdefault
command using the sblibs keyword to list the files that you have
created. Continuing with the previous example, for example:

setsbdefault,{sblibs="engine.cat transmission.cat

drive_train.cat suspension.cat"}

2. In the SystemBuild Editor, build the diagram using references to File
SuperBlocks:

a. In the Catalog Browser, expand the Libraries folder.

You can see the list of filenames specified by the sblibs keyword
in the Catalog view.

Note The libraries are static, and therefore the Delete, Cut, and Copy options are not
enabled for them.

b. Select a file that contains a SuperBlock you want to reference.

The SuperBlocks are listed in the Contents view.

Chapter 4 SuperBlocks

SystemBuild User Guide 4-20 ni.com

c. To create a File SuperBlock reference, drag the desired
SuperBlock icon into the SuperBlock Editor. (UNIX) Drag with the
middle mouse button. (Windows) Drag the left mouse button.

The SuperBlock is then represented by a File SuperBlock icon in
your diagram. You cannot open this SuperBlock in your model.

When you simulate your model, the simulator resolves the File SuperBlock
references by sequentially searching each library in the order specified in
the sblibs keyword. During the analysis phase, messages appear in the
log area of the Xmath Commands window indicating which library
supplies each SuperBlock where applicable.

A SuperBlock in a library may reference SuperBlocks within itself or
another library, but SystemBuild does not resolve SuperBlock references
by searching backward through the files listed with sblibs. You are
allowed to use the same SuperBlock name in more than one library. When
there are multiple occurrences of a name, any SuperBlock references to that
name go to the SuperBlock in the library appearing earliest in the sblibs
list (step 1).

Note When running the simulation from the operating system, specify the library file list
using the environment variable SBLIBS:

(UNIX) setenv SBLIBS "engine.cat transmission.cat"

(Windows) set SBLIBS="engine.cat transmission.cat"

© National Instruments Corporation 5-1 SystemBuild User Guide

5
Blocks

The SuperBlock Editor operates on a SuperBlock that has been loaded into
the Catalog Browser (refer to the Loading Data section of Chapter 2,
Catalog Browser) or created using one of the methods in the Creating
SuperBlocks section of Chapter 4, SuperBlocks. While SuperBlocks
control the timing attributes of subsystems, functional blocks (also called
primitive blocks) operate on a signal value. A block diagram can include
functional blocks, SuperBlock references (refer to the Creating a
SuperBlock Reference section of Chapter 4, SuperBlocks), connections
between blocks, external connections between blocks and the SuperBlock
inputs and outputs.

In this chapter, we show you how to create the contents of a SuperBlock.
This is an iterative process that differs somewhat for every user on every
diagram. Most people seem to drag all the blocks that they think they need
off the palettes initially; perform some type of logical arrangement of those
blocks; provide the basic properties of the blocks—name, inputs, outputs,
states (if applicable), and ID; and then connect them. Then they go back and
fill in all the details of the block definitions and perform some additional
modifications to the diagram. This chapter follows that pattern with the
following major topics.

• Types of Blocks

• Creating a Model with Blocks

• Assigning the Basic Properties to Your Block

• Connecting Blocks

• Modifying Block Diagram Appearance

There is nothing, however, that dictates that you work in the manner
described, for SystemBuild is a flexible tool and accommodates many
styles of working.

This chapter contains simple examples that demonstrate how to define,
connect, and modify blocks and the block diagram.

Individual blocks are described in the MATRIXx Help. In the Xmath
command area, type help blocks to see a list of blocks organized
alphabetically and by palette.

Chapter 5 Blocks

SystemBuild User Guide 5-2 ni.com

Types of Blocks
SystemBuild contains many types of blocks. For convenience, however, we
group these blocks into two categories: basic functional blocks and special
blocks. The basic functional blocks perform dedicated computations,
whereas the special blocks control the execution behavior of other blocks
and SuperBlocks in the model. These special SystemBuild blocks can
conditionally execute blocks or SuperBlocks in the model, repetitively
execute blocks or SuperBlocks, define the block execution order, or
terminate execution altogether.

In the following sections, we define basic functional blocks and the various
types of special blocks.

Basic Functional Blocks
Most of the blocks are basic functional blocks, and you will work with them
most of the time. Each of these blocks performs a dedicated computational
function. One example is the Gain block, which multiplies the inputs by
some fixed value and passes the result to the output channel.

Conditional Execution (Condition, IfThenElse Blocks)
The Condition and IfThenElse blocks provide frameworks for conditional
execution. The main difference between the two blocks is the type of blocks
they control.

The Condition block controls the execution of procedure SuperBlocks.
Depending on the inputs and the mode of the Condition block, one or more
procedure SuperBlocks listed in the block dialog box Code tab are
executed. Refer to the Condition topic in the MATRIXx Help for more
information.

Instead of controlling the execution of entire procedure SuperBlocks,
IfThenElse blocks control execution of specific blocks in a SystemBuild
diagram. Each IfThenElse block has a boundary area (a container) where
blocks can be placed and connected. A logical expression, defined in the
block dialog box, determines the block execution order. If the logical
expression evaluates to TRUE, the blocks in the IfThenElse block container
are executed. Refer to the IfThenElse topic in the MATRIXx Help for
additional information.

Chapter 5 Blocks

© National Instruments Corporation 5-3 SystemBuild User Guide

The DataPathSwitch block might also be classified as a conditional
execution block, but this is incorrect. With this block, all inputs are
executed first, and only one of the inputs is passed through to the block
outputs.

Repetitive Execution (While, Break Blocks)
The While block has a similar structure to an IfThenElse block. The blocks
inside the While block container are executed until the inputs to a Break
block are TRUE. Each While block must contain a Break block.

Terminating Execution (Stop Block)
The Stop block stops execution of a model if any of its inputs are TRUE.

Execution Ordering (Sequencer Block)
The Sequencer is a simple block that has no inputs or outputs. On a
SystemBuild diagram, the Sequencer is shown as a double vertical line that
partitions a SuperBlock diagram into two areas. The Sequencer does not do
any kind of computations. Its sole purpose is to define the order that blocks
are executed. This can be important if variable blocks (WriteVariable,
ReadVariable) or procedure SuperBlocks are used in the model.

The effect of the Sequencer on block execution is simple: all basic blocks
to the left of a Sequencer bar are executed before all blocks to the right of
the same Sequencer bar. The blocks in any child SuperBlock to the left of
the Sequencer bar are also executed before blocks on the right of the bar if
the child SuperBlock is in the same subsystem as the SuperBlock
containing the Sequencer. Refer to the Sequencer topic in the MATRIXx
Help for more information and examples.

Creating a Model with Blocks
When you create a SuperBlock, you can access the SuperBlock Editor.
Refer to the Opening a SuperBlock in an Editor section of Chapter 2,
Catalog Browser. Then you can create a model by placing blocks within
the SuperBlock. The most common way to create a block is to drag a block
icon from the Palette Browser into the SuperBlock Editor. You also can
create blocks using SystemBuild Access functions and commands, as
explained in Chapter 7, SystemBuild Access, and the MATRIXx Help.

Chapter 5 Blocks

SystemBuild User Guide 5-4 ni.com

A single Palette Browser supports all editor windows. You can access the
Palette Browser from the editor by any of the following methods:

• Double-click in an open area of the editor window.

• Click the Palette toolbar button.

• Select Window»Palette Browser.

• Move the cursor to empty space and type d.

(UNIX) Drag the block from the palette to the workspace with the middle
mouse button. (Windows) Use the left mouse button.

By default, the Palette Browser displays the Main palette. It also can
display custom blocks and palettes, as described in Chapter 19, Custom
Palettes and Blocks. For a full description of palette capabilities, including
loading and deleting palettes, refer to the Palette Browser topic in the
MATRIXx Help.

Under some circumstances you will not be able to drag a given block into
the Editor. Typically this occurs when you try to instantiate a strictly
continuous or strictly discrete block in a SuperBlock with conflicting
timing. You must change the SuperBlock type or select another block.

Assigning the Basic Properties to Your Block
When you instantiate a block, you define it from the block dialog box.
Figure 5-1 illustrates some block properties that can be displayed in the
editor. Typically, you define the basic properties and then connect the
blocks (refer to the Connecting Blocks section) before you provide the
details of the block definitions (refer to the Defining Your Block section).

In this section, we tell you how to raise a block dialog box. Although you
can have a number of SuperBlock Editors open at once, you can only have
one block dialog box open at any given time. We discuss the basic
properties common to most block dialog boxes and then the buttons that are
also common to the dialog boxes.

Chapter 5 Blocks

© National Instruments Corporation 5-5 SystemBuild User Guide

Figure 5-1. Block Properties Visible in the Editor

Raising the Block Dialog Box
There are three ways to raise the block dialog box:

• Position the cursor over a block, and then press <Enter> or <Return>.

• Select a block, and click the Block Properties toolbar button.

• Select a block, and then select Edit»Block Properties.

Defining the Basic Properties
Most block dialog boxes have the fields Name, Inputs, Outputs, States, and
ID across the top. The block type is displayed at the top of the dialog box
window frame (refer to Figure 5-2).

Figure 5-2. Example of Basic Properties Display in Block Dialog Box

optional block name

external inputs

external outputs

states(X)

required block ID

input labels (inherited)

output labels entered locallyinternal outputs

output labels

Chapter 5 Blocks

SystemBuild User Guide 5-6 ni.com

Fields that do not apply may be missing or inactive (grayed out).

Using the Common Buttons
All blocks have OK, Cancel, and Help buttons across the bottom. Clicking
the Help button raises the Help for the current block in the MATRIXx Help
window. The available tabs and fields vary from block to block, but in
general, the settings and values used to operate on an input signal are found
on the Parameters tab. The block Help focuses on the Parameters tab fields.

Connecting Blocks
Connections are data and control flows that direct input signals through a
model. They appear as orthogonal lines on the screen. Within a block
diagram, each (internal) connection routes the (output) signal from a block
so that it is the input signal to a specific pin in the next block in the
sequence. Signal connections go from left (inputs) to right (outputs).

By default, the connections are displayed in scalar mode, meaning that each
pin is drawn separately. The number of pins and any related labels are
displayed in the Editor.

In Figure 5-3, the labels make it easy to follow the signals inherited from
the SuperBlock ed2.

Name A name is optional for functional blocks. A legal name is
an alphanumeric string that starts with a alpha character and
contains no more than 32 characters. The default is blank
(no name).

Inputs The number of data flows or signals serving as inputs to the
block.

Outputs The number of data flows output by the block.

States Dynamic blocks and certain other blocks have a number of
“memory” elements, referred to as states. In dynamic blocks
the number of states is determined by the order of the
dynamics.

ID This block number is given a default value by the system, but
you can change it to any unused number in the range [1: 199].

Chapter 5 Blocks

© National Instruments Corporation 5-7 SystemBuild User Guide

Figure 5-3. Scalar Connections

Connection Rules
With very few exceptions, the following rules govern SystemBuild block
connections.

• In general, a single input accepts a single output from one other block.

• An output can be connected to the inputs of one or more other blocks.

• An output must not be directly connected as an input into the same
block. If the signal first passes through other blocks, the connection is
allowed (refer to Figure 4-2, Legal and Illegal Connections).

• Inputs and outputs are not required to be connected during an editing
session. When the block diagram is analyzed for simulation or when
code is generated, any unconnected input pins produce a warning.
Unconnected inputs are assigned to zero.

• Individual blocks may generate external outputs.

• Top-level SuperBlocks are required to have at least one output.
Unconnected outputs from a top-level SuperBlock are set to zero.
SuperBlock references, including procedures, may have zero outputs.

• It is acceptable to connect an element of a vector output to a scalar
input, or a scalar output to an element of a vector input.

Creating Connections
You can connect blocks using selections from the SuperBlock Editor
Connect menu or using mouse shortcuts.

Chapter 5 Blocks

SystemBuild User Guide 5-8 ni.com

Creating a Simple Connection
A simple connection connects the first available from block output signal
to the first available to block input pin. It then connects the next available
output signal to the next available pin until all pins are connected.

To perform a simple connection, middle-click (3-button mouse) or
<Ctrl–right-click> (2-button mouse) as shown in Table 5-1.

Note If there is more than one available input pin, you must hold the mouse button down
momentarily on the to block to immediately connect to the first available pin. Otherwise,
SystemBuild raises the Connection Editor.

Using the Connect Menu and the Toolbar Buttons
The connection process is selection-activated—that is, at least one block
must be selected to activate Connect menu items.

The Connect menu items are described below. Interspersed with the
descriptions are alternative methods of performing the same actions using
the toolbar buttons. The Connect menu is also described in the MATRIXx
Help for the Editor window. Click ? or Help»Topics to raise the Help
window in the SuperBlock Editor.

Table 5-1. Simple Connections

Connection From ➀ To ➁ Click

Block to block Source Destination

External inputs to
block

Open space to left of
destination

Destination

Block to external
outputs

Source Open space to
right of source

➀ ➁

➀ ➁

➀ ➁

Chapter 5 Blocks

© National Instruments Corporation 5-9 SystemBuild User Guide

Inputs Connect an external input to the selected block. This menu item is
only active when one block is selected.

Mouse: Middle-click (3-button mouse) or <Ctrl–right-click>
(2-button mouse) in an open area. Then click in the target
block.

 Select one block. Then click the external input toolbar
button.

Blocks Create a connection between two selected blocks. This menu item is
active only when two blocks are selected.

Mouse: Middle-click (3-button mouse) or <Ctrl–right-click>
(2-button mouse) in from object, then in to object.

Select two blocks. Then click the internal connection
toolbar button.

Outputs Connect the selected block to an external output. This menu item is
only active when one block is selected.

Mouse: Middle-click (3-button mouse) or <Ctrl–right-click>
(2-button mouse) on object, then in an open area.

Select a single block. Then click the external output
connection icon.

Manual
Routing

Enable manual routing of connections. Select a connection using the
middle mouse button (3-button mouse) or <Ctrl–right-click>
(2-button mouse), and change the routing by dragging the marker to a
new location.

Mouse: Middle-click (3-button mouse) or <Ctrl–right-click>
(2-button mouse) in an open area, holding down the button
until transition markers appear.

Automatic
Routing

Automatically route connections to selected block(s). The SuperBlock
Editor lays out the connections using an algorithm that picks a route
that avoids crossing blocks and other connections, if possible. If
manual routing was previously performed on the selected block(s),
selecting this option negates that effort.

Chapter 5 Blocks

SystemBuild User Guide 5-10 ni.com

Using the Connection Editor
If you middle-click (3-button mouse) or <Ctrl–right-click> (2-button
mouse) in a From block and then in a To block where the connections are
not simple, the Connection Editor opens (refer to Figure 5-4).

Figure 5-4. Connection Editor

If external inputs or outputs are involved, the dimension of the External
Input/Output vector is displayed at the top of the dialog box. This field is
editable. The FROM (or EXT. INPUT) and TO (or EXT. OUTPUT) fields
show the block IDs of the blocks being connected. The buttons in the
middle indicate the possible connections. The connecting lines indicate the
connections, if any. The four buttons at the bottom of the Connection
Editor—Cancel, Add, Del and Done—control the actions in the dialog box.

Creating Connections
The following items provide the rules and the operations in this dialog box.

• Only one Connection Editor is allowed at any given time, regardless of
the number of SuperBlock Editors open.

• The Connection Editor interface is unique in SystemBuild in that you
must select the action (Add or Del) before you choose the operand (the
input signals).

• To add the maximum number of one-to-one connections in one
operation, double-click Add, and the Connection Editor makes the
simplest set of connections that it can without deleting existing
connections. For example, if pins 1 and 2 are available on both sides of
the menu, SystemBuild connects them.

• To make a single connection (with the Add button enabled), select a
pin number from the source block. Then select a pin number in the
destination block. Although it is natural to go from left to right, it is not

Chapter 5 Blocks

© National Instruments Corporation 5-11 SystemBuild User Guide

necessary. You can select a pin from either block as long as the next
selection is from the opposite block.

• You also can create connections using the FROM, TO fields. This field
assumes the input is from left to right (source to destination). You
specify a single connection as a pair of integers separated by a comma.
For example, 2,7 connects the second output of the source block to the
seventh input of the destination block. To specify multiple
connections, specify two vectors separated by a semicolon, where the
first vector represents a range of pins on the source block, and the
second represents pins on the destination block. For example,
1:5;11:15.

• To make multiple connections, drag-select (lasso) multiple
consecutive pins from the source block. Then lasso an equal number
of consecutive pins on the destination block.

Deleting Connections
• Click the Del button to enable deletion. Click any pin on the source

(left side) or destination (right side), and SystemBuild erases its
connections.

• Double-click Del to undo all the changes in the last Connection Editor
session.

Altering the Number of External Inputs or Outputs
• To alter the number of external inputs or outputs from within the

Connection Editor, change the number in the display at the top, and
press <Enter> or <Return>.

• If you add to the number of external inputs, the additional inputs are
added to the end.

• If you are adding to the number of external outputs, you can add them
to the end by typing the new number of outputs and pressing <Enter>
or <Return>.

• You can insert outputs into the existing output list as follows:

a. Type the new number of outputs (but do not press <Enter> or
<Return>).

b. Click between any two output destination pins. The additional
pins are inserted at that location. Any previous information is
displaced (but not lost).

Chapter 5 Blocks

SystemBuild User Guide 5-12 ni.com

Displaying Connections
The way signals are displayed in the Connection Editor is influenced by the
block labels or names, and the Input Pins/Output Pins settings for each
block. By default, vectored labels are compressed. When you have a large
number of pins shown in scalar mode, a scroll box appears above the
Cancel button. By default, Channel 1 is always at the top. You can use the
down arrow to move the view channels further down the list, and return
towards the top with the up arrow. The scroll bar allows you to do the same
on a larger scale. Drag the box left to go to the top of the list, or drag it right
to display the bottom of the list.

Note When you move connections out of alignment, they are visually truncated. However,
the connection is not affected.

Exiting the Connection Editor
• Click Cancel to exit the Connection Editor and discard all the changes

in the last session.

• Double-click Cancel to remove all changes but leave the Connection
Editor on the screen.

• Click Done to accept the changes that you made in this session,
transfer them to the picture on the screen, and return to the SuperBlock
Editor.

Defining Your Block
This section focuses on elements common to all blocks—for example, tabs,
fields, and how to use them. The major topics are as follows:

• Block Dialog Box Overview

• Block Dialog Box Fields

• Entering Matrix Data in Block Dialog Boxes

• Specifying Labels and Names

• Specifying Data Types

Chapter 5 Blocks

© National Instruments Corporation 5-13 SystemBuild User Guide

Block Dialog Box Overview
This section discusses graphical elements (controls) found on SuperBlock
and block dialog boxes. All interactive dialog boxes have common
graphical elements that provide clues about how to enter data. Data entry
can take many forms. Depending on the block type, you can type in strings
and numeric values, Xmath variable names that represent values, or Xmath
statements that calculate a value. You also can choose settings by selecting
dialog-specific menu items or enabling or disabling checkboxes.

In SystemBuild, dialog boxes adapt to the block environment and settings
whenever possible. For example, a visual indication lets you know if a field
is not applicable in the current environment, as shown in Figure 5-5.

Figure 5-5. Motif and Windows Versions of the SuperBlock Dialog Box

Spin BoxesCombo Boxes

UNIX (Motif) Dialog

Windows Dialog

Disabled Text Fields

Enabled Text Fields

Chapter 5 Blocks

SystemBuild User Guide 5-14 ni.com

Figure 5-5 also demonstrates the principle of consistency between fields.
Here, nine inputs have been specified, so the dialog box supplies nine fields
for each column on the Inputs tab. SystemBuild also synchronizes the
Outputs tab fields and the Document tab fields to match the inputs
and outputs specified. Each block has its own parameters and its own
dependencies between fields. These are discussed in the MATRIXx Help
for each individual block.

Differences Across Platforms
Dialog box contents are the same across platforms, but there are small
differences in the implementation. These differences are summarized in
Table 5-2.

Dialog Box Navigation and Shortcuts
The MATRIXx Help documents dialog box navigation and shortcuts. To see
this information, type help shortcuts in the Xmath command area, and
view the Block Dialog Shortcuts.

Table 5-2. Cross-Platform Widget Appearance

Dialog Box
Contents UNIX Windows

Enabled Text Fields Title is black. Type directly into the
field.

Field is white. Type directly into the
field.

Disabled Text Fields Title is grayed out. Field is grayed out.

Combo Box
(drop-down box)

Click the field to raise a menu, drag
to highlight an item, and then
release.

Click the down arrow to raise a
menu. Click a menu item to select it.

Spin Box Click the up arrow to increment the
value. Click the down arrow to
decrement.

Click the up arrow to increment the
value. Click the down arrow to
decrement it.

To rapidly advance the counter,
click the arrow and hold down the
mouse button. Release when the
desired value is reached.

Chapter 5 Blocks

© National Instruments Corporation 5-15 SystemBuild User Guide

Block Dialog Box Fields
In this section, we discuss the dialog boxes in more detail. Specifically, we
provide information by tabs that is common to most of the block dialog
boxes. The nine possible tabs—Parameters, Code, Inputs, Outputs, States,
Document, Comment, Icon, and Display—are discussed in this section. The
behavior of all the tabs is consistent among blocks with the exception of the
Parameters tab.

You can find specifics for any given block in the MATRIXx Help with
emphasis on the Parameters tab.

Parameters
The Parameters tab fields vary widely among blocks, but, in general, the
settings and values used to operate on an input signal are found on the
Parameters tab.

Data or settings information for the block internal function is supplied here.
Depending on the block, Parameters tab fields may require strings, vectors,
or matrices. Numeric input may have specific data type requirements. It is
common to have block-specific interdependencies between fields. For
example, in Figure 5-6, the number of elements in the Breakpoints field
(three) determines the number of rows in the gain matrix.

Chapter 5 Blocks

SystemBuild User Guide 5-16 ni.com

Figure 5-6. Gain Scheduler Block Dialog Box, Parameter Tab View

Code
When present, the Code tab is used to accommodate multiple lines of text
input. Typical uses for the Code tab are equations, expressions, or logical
statements. Examples of blocks that have a Code tab are:
AlgebraicExpression, LogicalExpression, Condition, BlockScript,
IfThenElse, While, and FuzzyLogic. The syntax for instructions placed in
the Code tab is block specific, so be sure to view the MATRIXx Help for
each block before using the Code tab.

To change the text editor from the Code tab, refer to the Default Text Editor
section of Chapter 17, SystemBuild Customization.

Inputs
For primitive blocks, this tab displays the Input Name and Input Signal
fields.

Input names are specified at the SuperBlock level as Input Labels (when
Enter Local Label Names is selected for the Input Naming field on the
Attributes tab) and then propagated to SuperBlocks or blocks further down

Chapter 5 Blocks

© National Instruments Corporation 5-17 SystemBuild User Guide

the hierarchy. Output labels, by contrast, are specified within each
elementary block.

Note If you want all inputs on the same face, you can set them all from the Input Face field
on the Display tab. If you want to have different settings, then you must set them on the
Inputs tab.

Refer to the Specifying Labels and Names section for tips on entering labels
or names.

Outputs
The Outputs tab is used to label and format block output data. You can
display and modify several output-related fields, including Output Label,
Output Name, and Data Type. Also, if you choose a fixed-point data type,
a Radix field and related fixed-point information (read-only) are displayed
near the bottom of the dialog box.

Notice that while input labels can be inherited, output labels and names
must be specified anew for each block. Like input names, output names do
not appear in the block diagram. They are of importance for code
generation only.

Input
Name

A legal name has up to 32 characters, starts with a letter, and
can contain the characters A–z, the numbers 0–9, and
underscores. The input name appears in code generated by
AutoCode for the block or SuperBlock only. It does not
appear in block diagrams.

Refer to the AutoCode Reference manual.

Input
Signal

For primitive blocks, this read-only field shows the names of
the external inputs to the block. The numbers are the pin
numbers of the inputs, numbered from the top of the block.

Input
Face

Use this field to set the face for one or more inputs. Choices
are Left, Bottom, Right, and Top. Choices are relative to the
default position of the block. The faces change with the block
when you rotate it or change directions. This field is
informed by and informs the Input Face field on the Display
tab. If you use a different face for one or more inputs, the
Input Face field changes to Mixed.

Chapter 5 Blocks

SystemBuild User Guide 5-18 ni.com

This read-only field displays the number of this output
pin on the block icon, counting from the top.

Output
Label

Enter a label name in this field. You can use
!"#$%'*+,-./>=<?@^ and European characters
(ASCII codes up to 128). If Show Output Labels is
enabled on the Display tab, the label is displayed at the
corresponding output pin location in the block diagram.
This label also appears in DocumentIt documentation.

Output
Name

To increase traceability in generated code, AutoCode
users can specify a name for the output signal. Do not use
punctuation characters (!"#$%&'*+,-./>=<?@^():;
[]\‘{}~); invalid characters are mapped to underscores.
This name never appears in the editor.

Output
Data Type

This field allows you to assign a data type for each
output. For more detail on data types, refer to the
Specifying Data Types section and Chapter 15,
Fixed-Point Arithmetic.

Radix If the Output data type is fixed point, this field may be
enabled. Refer to Chapter 15, Fixed-Point Arithmetic.

Output
UserType

If you want to specify a user-defined type (UserType) for
this output, specify it in this field. Refer to the
User-Defined Data Types (UserTypes) section of
Chapter 15, Fixed-Point Arithmetic.

Output
Scope

Select Local or Global scope for the output channel. This
choice impacts how the output is declared in the generated
code. It has no simulation effect. Refer to the AutoCode
Reference manual for more information.

Output
Address

A text field, no more than 32 characters in length, that
can contain the memory address of a channel scoped as
Global. This address has no simulation effect. Refer to the
AutoCode Reference manual for more information.

Overflow
Protection

The overflow protection setting is ignored during
simulation (forced to On) but, it significantly impacts
code generation. If overflow protection is Off, AutoCode
C does not generate overflow protection code for the
current block (assuming the output data type is fixed
point). This option is not supported for Ada.

Chapter 5 Blocks

© National Instruments Corporation 5-19 SystemBuild User Guide

States
The States tab is only present in dynamic blocks.

Document
The Document tab is only present in blocks with outputs. Its fields are used
to annotate generated code. DocumentIt also extracts these fields. The #
(output number), Output Label, and Output Name fields are tied to the
corresponding fields in the Outputs tab. A change to these fields on either
tab updates both locations.

The Output Min, Output Max, Output Accuracy, Output Unit and Output
Comment fields are strictly for documentation. Any values entered appear
in the code generated by AutoCode.

Comment
The Comment tab is available on almost all blocks. It allows you to include
a multiline comment in text form.

The main feature of this tab is a scrolling text area. This area has the
following two purposes:

• Editing and displaying comments

• Defining and displaying user parameter values

Edit Comments
When the Comments checkbox is enabled, the scrolling text area is used
to edit and display comments. The user parameter list shown in the lower
right pane is grayed out.

The default editing mode is text, so you can simply type text straight into
the text area.

Alternatively, you can create a comment in a supported document editor. To
enter a comment in an editor, select an editor from the Editor combo box,
and then click the Launch button to raise it. Enter the comment, and then
close the editor when you are finished. The text you created is displayed in

State
Name

Optional. If entered, this name appears in the code
generated by AutoCode.

State
Comment

Optional text string.

Chapter 5 Blocks

SystemBuild User Guide 5-20 ni.com

the Comment tab. If the editor is Word (Windows only), the actual binary
or RTF markup is displayed.

Note The | and ~ characters are reserved. If your editor is Word, you cannot use the | or ~
characters in your comment text, not even in RTF format. If you enter these characters, they
are dropped.

To change the default text editor, refer to the Default Text Editor section of
Chapter 17, SystemBuild Customization. To add or remove applications
from the Editor combo box, refer to the Comment Editor section of
Chapter 17, SystemBuild Customization.

Edit User Parameters
When User Parameters is enabled, the text area is used to display or
change user parameters. You can create user parameters in several ways,
including the following:

• Create a new user parameter from the Editing User Parameters dialog
box. To view this dialog box, click the Advanced button.

• Define a new user parameter using the SETSBDEFAULT command with
userparameters keyword. These parameters are shown in the
Default User Params pane.

Double-click a user parameter in the text area to display it in the editor in
which it was created. You can redefine the value using the appropriate data
type. If you need to add, delete, or rename a user parameter, click the
Advanced button.

Icon
The Icon tab is present for all blocks. Chapter 18, Custom Icons, explains
how you can define or reference an icon using this tab.

Display
The Display tab appears for every block.

Chapter 5 Blocks

© National Instruments Corporation 5-21 SystemBuild User Guide

Input Pins/Output Pins
These fields determine how connections are displayed for the current
block. Three modes are possible: Scalar, Vector, and Bundle.

The above behaviors also have special notation within the Connection
Editor. Refer to the Connecting Blocks section. Note that you also can
change the display modes through combo boxes in the SuperBlock Editor
toolbar.

Input Face/Output Face
You can choose which face of the block that you want input pins connected
and which face you want output pins connected: Left, Bottom, Right, or
Top. You also can position the input pins on different faces. However, if
you select Mixed from the Display tab, you get an error. If you want to use
mixed faces, then set them on the Inputs tab. SystemBuild then sets this
field to Mixed. The input and output faces are relative to the default
position of the block (Rotation Normal and Direction Forward). When you
rotate or change directions of the block, the input and output faces change
with the block rotation and direction.

You can put both input and output pins on the same face. To minimize
connection crossings, the following rules apply:

• Input pins are first on the left and bottom faces.

• Output pins are first on the right and top faces.

Figure 5-7 illustrates these points.

You can cycle through the input faces by positioning the cursor over the
block and pressing <Ctrl-u> repeatedly. Likewise, you can use <Ctrl-y> to
cycle through the output faces.

Scalar The default, displays each pin separately.

Vector Groups all consecutively labeled signals of the same type
(refer to the Specifying Labels and Names section),
displaying one line per group. If Show Input Labels and/or
Show Output Labels are enabled, this option displays the
root label for each group of signals.

Bundle Uses a single line to represent all inputs/outputs. The
number of signals in each bundle is displayed near each
input/output bundle.

Chapter 5 Blocks

SystemBuild User Guide 5-22 ni.com

Figure 5-7. Inputs and Outputs on the Same Block Face

Show Input Signals
If Show Input Signals is enabled, input signal labels are shown in the
diagram. This checkbox also enables the display of external input labels.

Any inherited input signal labels are shown on the external inputs. If the
receiving block is a SuperBlock reference or a Condition block, any input
label information is passed from external or internal outputs to the input
signal field.

Show Output Labels
If Show Output Labels is enabled, output signal labels are shown in the
diagram. This checkbox also enables the display of external input labels.

Note External input labels are not shown if both Show Input Signals and Show Output
Labels are disabled.

Output mySB1: Right
Output mySB2: Left
Rotation: Normal
Direction: Forward

Output mySB1: Bottom
Output mySB2: Top
Rotation: Normal
Direction: Forward

mySB1
Output: Right
Rotation: Downward
Direction: Forward

mySB2
Output: Right
Rotation: Downward
Direction: Reverse

Chapter 5 Blocks

© National Instruments Corporation 5-23 SystemBuild User Guide

Propagate Labels
Reference blocks (BlockScript, Condition, SuperBlock, or State Transition
Diagram blocks) have a checkbox named Propagate Labels. This option
determines whether output labels from blocks contained in a reference
block are propagated into the reference block output labels. Only contained
blocks that are connected to the reference block external outputs can
propagate labels into the reference block.

When Propagate Labels is enabled, the contained block output labels
are immediately propagated, overwriting all output labels in the reference
block. Any change to the contained block output labels appear in the
reference block output labels. You cannot make modifications to reference
block output labels when Propagate Labels is enabled.

When Propagate Labels is not enabled, no propagation occurs. Turning off
propagation does not delete the reference block output labels. You can
modify the reference block output labels.

Icon Color
The Color field controls the color of the icon. Color is a positive or negative
integer from 1–14. 0 indicates no color. An unsigned or positive integer
fills the block or bubble with the specified color. A negative integer uses
the specified color to draw the object outline and the block name. (The
object is not filled.)

Fourteen colors can be used, as listed in Table 5-3.

Table 5-3. Integer Values and Approximate Colors

Integer Color Integer Color

1 red 8 pink

2 green 9 yellowgreen

3 yellow 10 bluegreen

4 blue 11 ltblue

5 magenta 12 purple

6 cyan 13 brown

7 orange 14 gray

Chapter 5 Blocks

SystemBuild User Guide 5-24 ni.com

For UNIX, these colors are approximate, as their values are based on the
values specified in your Sysbld resource file. Refer to the SystemBuild
Resource File (UNIX) section of Chapter 17, SystemBuild Customization.

Icon Type
The Icon Type field controls the icon appearance. You can select Special,
Alternate, User, Simple, or Custom. Special is the default selection and
usually displays a descriptive word or picture.

Note Not all blocks have different views for each option.

You also can change the icon type at the block diagram level. When you
select a block, its icon type is displayed on the SuperBlock Editor toolbar,
and you can change it from the combo box.

Alternatively, with the block selected, type s repeatedly to cycle through
icon types.

Rotation and Direction
You can use a combination of the Rotation and Direction fields to configure
a block (its icon, id, name, input pins, and output pins) in six ways. Rotation
is Normal, Upward, or Downward. Press <Ctrl-r> repeatedly to rotate
through the settings counter-clockwise. Direction is Forward or Reverse.
Press <Ctrl-h> or type f to change direction. These settings are illustrated
in Figure 5-8.

Chapter 5 Blocks

© National Instruments Corporation 5-25 SystemBuild User Guide

Figure 5-8. Rotation and Direction Settings for Blocks

Note This design prevents your positioning a block upside down.

Name Location
You can place the name of a block at the Left, Bottom, Right, or Top of the
block. The name location is relative to the default position of the block
(Rotation Normal and Direction Forward). When you rotate or change
directions of the block, the name location changes with the block rotation
and direction.

Rotation: Normal
Direction:Forward

Rotation: Upward
Direction: Forward

Rotation: Downward
Direction: Forward

Rotation: Normal
Direction: Revers

Rotation: Upward
Direction: Reverse

Rotation: Downward
Direction: Reverse

Chapter 5 Blocks

SystemBuild User Guide 5-26 ni.com

Entering Matrix Data in Block Dialog Boxes
For most blocks, numerical data is entered using the block parameters tab.
Depending on the block, you can enter a scalar, vector, or a matrix. When
a block requires data in the form of a vector or matrix, the dimension input
is determined by the block type and the numbers of inputs, outputs, states,
or other block-specific considerations. Figure 5-9 shows a dialog box with
a two matrix fields, Input Points and Output Values. Note that both show
the placeholder (...) in the input field.

Figure 5-9. Matrix Editor Field in Dialog Box

If applicable, the block dialog box provides a simple matrix editor. You can
enter data directly into the parameter fields, or you can use the matrix
editor.

Invoking the Matrix Editor
To invoke the matrix editor, click the field name, or click in the field itself.
The dimension of the matrix displayed below varies according to the
selected field.

Chapter 5 Blocks

© National Instruments Corporation 5-27 SystemBuild User Guide

Entering a Matrix
To enter data, specify a matrix in the parameter field, or type the values
into the matrix itself. When you are using the parameter field, you erase
or overwrite the (...). If the matrix input is accepted, the placeholder
reappears. If there are problems with the input, your expression remains
in the field, giving you an opportunity to edit it.

You specify matrices in the same manner as Xmath data: enclosed in square
brackets, with commas separating column elements, and semicolons
separating rows—for example, [11,12;21,22].

In addition to vector/matrix notation, you can use Xmath expressions to
supply matrix input. For example, given a ConstantInterp block with five
inputs and outputs, as shown in Figure 5-9, the following are acceptable
inputs that you can type in either the parameter field or the 1,1 cell in the
matrix editor.

Note This block expects the input points to be increasing.

• The matrix editor does not allow the entry of illegal matrices. In the
case above, a decreasing matrix is illegal for the ConstantInterp block.

• Sometimes the input meets the block criteria, but the dimension of the
input is incompatible. Depending on the block, the dialog box may
attempt to use the input by changing the inputs, outputs, or states to
match the input matrix. It might also attempt to resolve the incongruity
by cropping the matrix to fit the default or current matrix dimensions.

Matrix using vector notation: [1:5;6:10;11:15;16:20;21:25]

Transposed matrix: [1:5;6:10;11:15;16:20;21:25]'

Expression that results in a
legal matrix:

sort(rand(5,5),{incre})'

Chapter 5 Blocks

SystemBuild User Guide 5-28 ni.com

Editing a Matrix
After a matrix has been created, you may alter it from within the matrix
editor by simply typing new values or Xmath expressions in either the
parameter field or in matrix cells. Given a 5 × 5 matrix, you can do the
following:

• Alter a row—In 3,1, type: 1:5

• Alter a column—In 1,5 type: [95:99]'

• Change the entire matrix—In 1,1 of the Output Values matrix, type:
krone(1:5,[1:5]')

Specifying Labels and Names
Blocks are connected such that the output of one block becomes the input
of another. Exceptions are external inputs, which we cover below.
Although SystemBuild allows you to show input signals, the default
settings use the output labels from one block as the input of another block
without repeating the labels.

Notice the following definitions.

• A label is defined at the source of a signal and may be changed locally.

• A signal is assumed to originate elsewhere and can only be changed at
the origin.

As shown Figure 5-3, block dialog boxes allow you to enter optional output
labels for each block output. If output labels are inherited from a previous
block, they can be displayed in the block diagram.

To display output labels, complete the following steps:

1. Open the receiving block’s block dialog box, and click the Display tab.

2. Enable the Show Outputs Label checkbox.

The output labels are propagated to any blocks that receive the signal.
The output label on the sending block becomes an input signal label on
the receiving block.

Alternatively, you can use shortcuts. Select the block and perform one of
the following actions:

• Type l (lower-case L).

• Click the Output Labels On/Off toolbar button.

Chapter 5 Blocks

© National Instruments Corporation 5-29 SystemBuild User Guide

Specifying SuperBlock External Input Labels
External inputs to a SuperBlock represent the first place where a signal is
visible and may be labeled in the SuperBlock.

By default, SuperBlocks have the Input Naming field set to Inherit
Higher-Level Names. This disables the Input Label field on the Inputs
tab, prohibiting local changes. You can replace the Input Label values
with labels that are local to this SuperBlock and (optionally) the hierarchy
below it.

To change the external labels on a SuperBlock, complete the following
steps:

1. Raise the SuperBlock Properties dialog box.

2. In the Input Naming field on the Attributes tab, select Enter Local
Label Names.

3. Go to the Inputs tab, and specify the local input labels.

Propagating Labels in a Hierarchy
To propagate the local signals down the hierarchy, complete the following
steps:

1. Double-click in the diagram to open each SuperBlock.

Note SystemBuild has been intentionally designed so that you must double-click to open
the SuperBlocks in the hierarchy for label propagation to work.

2. Raise the SuperBlock Block dialog box.

3. Go to the Display tab, and enable Show Output Labels and
Propagate Labels.

The BlockScript block and the Condition block also can propagate their
names to blocks that receive their signals.

Creating Sequential Names for Vectors and Matrices
Although labels or names can be entered separately into each enabled field
in the Input or Output tab, SystemBuild vectoring provides a way to
automatically generate unique labels for each element in a vector. You also
can create matrix labels by assigning a unique name for each element in a
matrix. For AutoCode users, labels or names determine the structure of the
output code. Refer to the AutoCode Reference manual.

Chapter 5 Blocks

SystemBuild User Guide 5-30 ni.com

Vectoring Signal Labels or Names
You can use vectoring to generate unique labels or names for vectors. The
syntax is:

string(ns:nf)

where string is the constant part of the name (must be entered first), ns
is the starting number, and nf is the finishing number for the vector. The
parentheses are required. For example, lab(1:8) produces lab1, lab2, ...
lab8.

• Descending sequences are not supported.

• If a vector longer than the list is specified, a vector of labels is assigned
up to the last (highest numbered) label field—that is, the numbering
does not wrap around to the top of the list (refer to Example 5-1).

Example 5-1 Vectoring Labels

1. In the Catalog Browser, select File»New»SuperBlock.

The SuperBlock Properties dialog box appears.

2. Name the SuperBlock ex2, and make the Type Discrete.

3. Specify nine inputs and five outputs.

4. In the Input Naming field, select Enter Local Label Names.

Because this is a top-level SuperBlock, it has no parent from which to
inherit labels.

5. Click the Inputs tab.

6. Click in the first row of the Input Label field, and type ex2_a(1:3).
Press <Enter> or <Return>.

7. Click in the fourth row of the Input Label field, and type ex_2b(1:3).
In the seventh row, type ex_c(1:3). Press <Enter> or <Return>.

Your dialog box should now resemble one of the dialog boxes in
Figure 5-5.

Using Matrices for Signal Labels or Names
The following matrix naming syntax automatically creates one label for
each element in a matrix:

string(nsr:nfr,nsc:nfc)

where string is the constant part of the name (it must be entered first),
nsr and nsc are the starting row and column number, and nfr and nfc are
the finishing row and column numbers for the matrix. The parentheses are

Chapter 5 Blocks

© National Instruments Corporation 5-31 SystemBuild User Guide

required, and the entries produced are emitted in row-major order. The total
number of entries produced is (nfr – nsr + 1)*(nfc – nsc + 1). For example,
foo(1:2,1:2) produces the entries foo(1,1), foo(1,2), foo(2,1), and
foo(2,2).

You can produce the same result with the following alternate syntax:

string[ROWSxCOLS]

In the above syntax, string is the root of the name and must appear first.
ROWS and COLS are integers giving the number of rows and columns in the
matrix. x indicates dimension, so foo[2x3] would create a create a
2 × 3 matrix whose entries are foo(1,1), foo(1,2), foo(1,3), foo(2,1),
foo(2,2), and foo(2,3). In this case, the matrix dimension [2×3] is displayed
in the editor (assuming that labels are showing). You can view the
individual element coordinates in the block dialog box or from the
Connection Editor.

Rules for Matrix Labelling
Either syntax is only reliable when nsr = nsc = 1—that is, you must
generate a matrix starting at the first row and column positions. If you start
at a location other than (1,1), the automatically generated labels are
“mangled.” You can recognize a mangled label by the presence of
underscores. For example, the mangled version of foo(3,1) would be
foo_3_1. These labels are not recognized as matrix elements. One
exception exists: if the dimension of the matrix was properly specified at
an earlier time, the matrix structure is recognized, but the labels are still
mangled.

For example, suppose you have a block with eight outputs. If you delete all
the output labels, go to the fifth output label box and type foo(3:4,1:2),
the four output labels are mangled—they do not represent matrix elements.
(You get foo_3_1, foo_3_2, foo_4_1, and foo_4_2.) If you delete all the
output labels (again) and go to the first output label box and type
foo(1:2,1:2), when you go to the fifth output label box and type
foo(3:4,1:2), you get the expected (true) matrix element entries.

• Descending sequences (nsr >nfr or nsc >nfc) are not supported.

• If a matrix with more elements than there are label fields (boxes)
remaining is specified, matrix element labels are assigned up to the last
(highest numbered) label field. The numbering does not wrap around
to the top of the list.

Chapter 5 Blocks

SystemBuild User Guide 5-32 ni.com

Example
You can see how to use matrices by working through Example 5-2.

Example 5-2 Using Matrices to Name Superblock Input Labels

1. In the Catalog Browser, select File»New»SuperBlock.

2. In the SuperBlock Properties dialog box, name the SuperBlock
matrixExample and make the Type Discrete.

3. Specify 12 inputs and five outputs.

4. In the Input Naming field, select Enter Local Label Names.

Because this is a top-level SuperBlock, it has no parent from which to
inherit labels.

5. Click the Inputs tab.

6. Click in the first row of the Input Label field, and type a(1:3,1:2).
Press <Enter> or <Return>.

7. Click in the seventh row, and type b(1:5,1:1).

The resulting Input tab appears in Figure 5-10.

Figure 5-10. Inputs Tab with Labels Specified as Matrices

Chapter 5 Blocks

© National Instruments Corporation 5-33 SystemBuild User Guide

Shortcuts for Editing Labels or Names
This section contains shortcuts for editing existing labels. Wherever fields
are writable, you can change existing labels or names individually or use a
vectoring or matrix syntax to overwrite multiple existing labels. The
following table summarizes label editing syntaxes.

Note Erase the current contents of the field before entering these commands:

string(ns:nf) Starting from the cursor location, create unique names.
Existing names are overwritten.

string(ns:nf)& Insert new labels starting at this location, and displace
ensuing labels. Some labels might drop off the bottom
of the list.

string(nsr:nfr,nsc:
nfc)

Starting from the cursor location, create unique names:
existing names are overwritten. If results are not part of
a complete matrix, string is mangled and array
notation is not used.

string(nsr:nfr,nsc:
nfc)&

Insert new labels starting at this location, and displace
ensuing labels. Some labels might drop off the bottom
of the list. If results are not part of a complete matrix,
string is mangled and array notation is not used.

(1:n) Starting at the cursor location, erase consecutive labels,
where n is the number of fields you want erased.

(1:n)& Starting at the cursor location, insert n empty fields.
Ensuing labels are displaced but preserved.

(ns:nf) With your cursor in cell ns, erase all fields through
cell nf.

(ns:nf)& With your cursor in cell ns, erase all fields through cell
nf and displace all ensuing labels.

&d Put the cursor at the end of the line or delete the empty
field before issuing this command. It deletes the current
label and advances all following labels by one to fill
the gap.

Chapter 5 Blocks

SystemBuild User Guide 5-34 ni.com

Specifying Data Types
SystemBuild and AutoCode provide you with a rich collection of built-in
data types for modeling, simulation, and code generation. All data type
conflicts must be resolved before you can generate code.

The SystemBuild data type feature provided allows you to:

• Create models that may require a mix of different data types. You
specify data types in the editor while defining individual blocks and
SuperBlocks.

• Perform an automatic block-by-block check of the compatibility of
output data types with input data types in a model. Refer to the
typecheck keyword in the Data Type Checking section.

• Simulate models using the appropriate arithmetic behavior when
mixed data types are present. Refer to the fixpt keyword in the Data
Type Checking section.

• Automatically generate code with proper type declarations for the
model.

The SystemBuild Editor sets data types for four classes of data:

• SuperBlock external inputs

• Block outputs

• Block states

• Block parameters

The data types for the SuperBlock external inputs are set explicitly in the
SuperBlock Editor on the Inputs tab of the SuperBlock Properties dialog
box. The primitive block outputs are set explicitly on the Outputs tab of the
primitive block dialog box.

The block parameter and state data type rules usually depend on the data
types of the inputs or outputs of the block and do not require your setting
them explicitly. However, these data types may be affected by what you set

&dn n is a number indicating how many consecutive labels
to remove. For example, &d5 deletes five labels
including the current one. The remaining labels are
advanced to fill up the space.

(Xmathvar) Xmathvar in parenthesis is an Xmath string variable or
column vector of strings variable whose value is copied
into the field or consecutive fields

Chapter 5 Blocks

© National Instruments Corporation 5-35 SystemBuild User Guide

on the Input tab of the SuperBlock Properties and the Outputs tab of the
block dialog boxes. For example, the rule for the Quantization block
requires that the data type of the Resolution(s) parameter be the same as the
output. If you specify Integer as the Output Data Type on the Outputs tab
of the block dialog box, then the parameter Resolution(s) also must be an
integer. This rule also applies to any parameter variables (%Variables) that
are used for Resolution(s).

The default output and parameter data type for SuperBlocks and functional
blocks is Float.

Traditional Data Types
The available set of data types is composed of the following traditional
types:

• Float

• Integer

• Logical

• Fixed-point

The set of fixed-point data types includes more than 300 distinct members.
Each fixed-point type is uniquely specified as a signed/unsigned type with
two additional attributes: word length and radix position. Following the
common microprocessor architectures, a fixed-point data type may have a
word length of 8, 16, or 32 bits. The radix position is restricted to a value
between –16 and 48. For a detailed description of the fixed-point arithmetic
feature, refer to Chapter 15, Fixed-Point Arithmetic.

The rest of this chapter deals strictly with the non-fixed-point method of
data type checking. Depending on what is specified in the SystemBuild
model, AutoCode declares variables with one of the following data types:

• Floating point—Data with real values is the default type for inputs
and outputs. In Ada and C code, this type is referred to as RT_FLOAT.

• Integer—Data specified by whole numbers. In Ada and C code, this
type is referred to as RT_INTEGER. SystemBuild model data which is
declared RT_INTEGER is rounded.

• Logical—Data with two values is referred to as BOOLEAN or
RT_BOOLEAN in Ada and C.

Attempting to produce efficient code, AutoCode takes advantage of the
data type characteristics whenever possible. More appropriate algorithms
may be generated according to the data types specified.

Chapter 5 Blocks

SystemBuild User Guide 5-36 ni.com

Data Type Checking
All data type conflicts must be resolved before you can generate code. To
aid you in correctly matching the various data types, the Connection Editor
shows data types for all inputs and outputs. There also is a complete list of
the floating, integer, and Boolean data type rules for inputs, outputs, and
states for each primitive block in Table 5-5 and a list of blocks for which
fixed-point arithmetic is supported in Table 15-1, Blocks Compatible with
Fixed Point, with Data Type Rules, along with data type rules for these
blocks. For parameter rules for each block, refer to the MATRIXx Help.

The TypeConversion block is provided to help with some of your data type
mismatches. It accepts a vector of a given type and converts it to an
identically dimensioned vector of the type you specify. If you want a block
input to be integer, but the block feeding into it allows only floating point
outputs, you can insert a TypeConversion block that converts floating
inputs to integer outputs. For a full explanation, refer to the MATRIXx Help
for the TypeConversion block.

For operations that accept fixed-point inputs and perform logic or
arithmetic on them, you may not need to use TypeConversion blocks
because specifying a fixed-point data type on an external input causes
the data on that input to be presented in the specified data type.

Data types can be monitored and modeled in simulation. The typecheck
and fixpt sim keywords are provided for this purpose:

• The typecheck keyword performs a consistency check between
input and output data types during the simulation analysis phase.
You can use the typecheck keyword in the analyze(), sim(),
simout(), creatertf(), autocode(), or documentit()
functions.

Before the RTF is generated, type checking is performed for the entire
model. Any inconsistencies detected in the model produce error
messages pointing to the block or blocks that contain the conflicting
data types.

• The fixpt keyword enables fixed-point arithmetic, which supports
mixed data types. By combining 8-, 16-, and 32-bit types with signed
and unsigned properties, more than 300 data types can be created. The
powerful fixpt keyword propagates and performs checking on all
data types encountered in the model. The keyword fixpt is provided
as an option for the sim() function for this specific purpose.

Chapter 5 Blocks

© National Instruments Corporation 5-37 SystemBuild User Guide

Table 5-4 summarizes the simulation behavior when different
combinations of typecheck and fixpt are used. Refer to the Showing
and Setting Keyword Default Options section of Chapter 8, Simulator
Basics, and the sim topic of the MATRIXx Help for more about these
keywords and how to use them. Note that both are off by default, and the
default simulation behavior is to treat all data types as Float.

Example: How Typecheck Affects Simulation Results
Example 5-3 shows how the typecheck keyword affects simulation
results.

Example 5-3 How the Typecheck Keyword Affects Simulation Results

1. Go to the Xmath Commands window and type:

copyfile "$SYSBLD/examples/integer_sim/intsim.cat"

The catalog is copied to your current working directory.

2. Load the catalog.

3. In the Xmath command area, type:

[,y]=sim("IntSim1", [0:3]’,{typecheck,!simclock})?

The sim() results show that the integer and float data types have been
preserved.

4. Call the sim() function again without typechecking:

[,y]=sim("IntSim1", [0:3]’,{!typecheck,!simclock})?

Integer simulation does not take place. Only floats are returned.

Table 5-4. typecheck and fixpt in sim

sim() options propagated if present?

typecheck fixpt float integer fixpt

TRUE TRUE yes yes yes

TRUE FALSE yes yes no

FALSE FALSE yes no no

FALSE TRUE yes yes yes

Chapter 5 Blocks

SystemBuild User Guide 5-38 ni.com

Example: Resolving Data Type Mismatching
Exmple 5-4 demonstrates how to resolve an input/output data type
mismatch.

Example 5-4 Data Type Mismatch with Gain Blocks

Consider the SuperBlock, DataTypeGain, shown in Figure 5-11.

Figure 5-11. Data Type Mismatch Model

Check the model for errors using the analyze() function:

analyze("DataTypeGain", {typecheck})

The keyword typecheck instructs analyze() to include data type
consistency checking as part of the analysis. As a result of the data type
checking, the following error is generated:

Input Type Mismatch: {DataTypeGain.GainFloat.3}

Input 1 is connected to INTEGER.

Rule: Input Type Must Match Output Type.

Expecting FLOAT.

Problems Loading model from catalog. Exiting.

Let us examine the model. The only difference between the Gain blocks is
that the output type is set to integer for GainInt, and it is set to float for
GainFloat. Both Gain blocks accept the same input signal from the parent
SuperBlock DataTypeGain. The type is integer.

Chapter 5 Blocks

© National Instruments Corporation 5-39 SystemBuild User Guide

As indicated in the error message and also in Table 5-5, the input data
type must be the same as the output data type for Gain blocks. The block
GainFloat breaks this rule because its output data type is float, which does
not match the input data type (inherited from the external input), which is
integer.

To correct the problem, go to the Output tab of the GainFloat block dialog
box, and change the Output data type to integer. Run the analyze()
command again, and the analysis completes with no errors.

Rules for Data Type Usage
Table 5-5 lists the blocks and their data type rules. Blocks that share
common rules are grouped together. If not otherwise stated, all input and
output channels must be the same data type. Footnotes for each group of
blocks contain specific exceptions to the general rules. When a footnote
marker appears, you can find the corresponding footnote at the bottom of
Table 5-5.

Table 5-5. Legal Data Types for Each Block (Except Fixed-Point Data Types)

Block Type Legal Inputs Legal Outputs Legal States

Summer,
ElementProduct,
DotProduct,
CrossProduct,
ElementDivision,
AbsoluteValue

Same as output Integer or float N/A

TypeConversion Any Any N/A

TimeDelay Same as output Integer OK if
discrete or
procedure

Same as
outputs

ShiftRegister
LogicalOperator

Any input >0 is TRUE,
else FALSE

TRUE = 1,
FALSE = 0.

Same as
outputs

RelationalOperator Integer or float TRUE = 1,
FALSE = 0.

N/A

DataPathSwitch First channel, any input >0 is
TRUE, else FALSE. Other
channels, same as output

Any N/A

Chapter 5 Blocks

SystemBuild User Guide 5-40 ni.com

Stop Any input > 0 is TRUE,
else FALSE.

N/A N/A

STD Any1 TRUE = 1,
FALSE = 0.

N/A

SpringMassDamper
StateSpace
NumDen
Pole Zero
ComplexPoleZero
Integrator
Hysteresis
LimitedIntegrator
PIDController
UserCode
Fuzzy Logic

Must be float Must be float Must be
float

SquareRoot
Logarithm
Exponential
SignedSquare Root
Sin
Cosin
Atant2
SinAtan2
Cosin
Asin
CosAsin)
Acos
Cartesian2Polar
Polar2Cartesian
Cartesian2Spherical
Spherical2Cartesian
AxisInverse
AxisRotation
CubicSplineInterp
BiLinearInterp
BiCubicInterp
MultiLinearInterp.

Must be float Must be float N/A

Quantization Same as output Integer or float N/A

Table 5-5. Legal Data Types for Each Block (Except Fixed-Point Data Types) (Continued)

Block Type Legal Inputs Legal Outputs Legal States

Chapter 5 Blocks

© National Instruments Corporation 5-41 SystemBuild User Guide

AlgebraicExpression Integer or float2 Integer or float N/A

Waveform
PulseTrain
SquareWave
Step

N/A Integer or float3 N/A

SinWave
UniformRandomGenerator
NormalRandomGenerator

N/A Must be float N/A

LogicalExpression Integer or float1 TRUE = 1,
FALSE = 0.

N/A

UPowerConstant
ConstantPowerU

Same as output Must be float N/A

BlockScript Defined in the BlockScript

GainScheduler First channel can be integer or
float. Other channels same as
output.

Integer or float N/A

Polynomial
Gain
Encoder
Decoder
ConstantInterp
LinearInterp
Breakpoints
Deadband
Saturation
LimitedIntegrator
BiLinear Interp
Preload

Same as output Integer or float N/A

WriteVariable Must be float2 N/A N/A

ReadVariable N/A Must be float2 N/A

Constant N/A Integer, float, or
logical

N/A

Table 5-5. Legal Data Types for Each Block (Except Fixed-Point Data Types) (Continued)

Block Type Legal Inputs Legal Outputs Legal States

Chapter 5 Blocks

SystemBuild User Guide 5-42 ni.com

Modifying Block Diagram Appearance
In addition to block level settings, the editor provides many ways to
improve the default appearance of your diagrams.

• SystemBuild Editor shortcuts are the most expedient way to change
your diagram. For a summary of all shortcuts, type help shortcuts
from the Xmath command area.

• When you are editing a large model, you can always use the scroll bars
to move the view. However, the View menu includes other helpful
options:

– Fit compresses the model so that all blocks appear within the
editor viewing region.

– Zoom changes the image size without changing the dimensions of
block diagram elements.

– Normal restores the default Zoom (%100).

Some of these options are also available on the Edit toolbar, which
appears below the menu bar. For a full description of the View menu
items and the toolbar buttons, select Help»Topics in the SuperBlock
Editor window.

ScalarGain,
MatrixTranspose,
MatrixMultiply,
RightMultiply,
LeftMultiply

Same as output Integer or float N/A

MatrixInverse,
MatLeftDivide,
MatRightDivide

 Float only Float only N/A

1 Each input and output channel can be a different data type, but channel usage must be consistent across all transitions. For
example, a logical input channel cannot also be used in a numeric expression, and a numeric input channel cannot also be
used in a logical expression.

2 Variable rules: The variables to which data is written may be float or integer. If bit addressing is used, the variable must be
integer.

3 The parameters related to the Time Variable (for simulation) are always floating point, while variables related to the Output
Variable match the output data type in the generated code.

Table 5-5. Legal Data Types for Each Block (Except Fixed-Point Data Types) (Continued)

Block Type Legal Inputs Legal Outputs Legal States

Chapter 5 Blocks

© National Instruments Corporation 5-43 SystemBuild User Guide

• Panning is a useful option for viewing large models that extend beyond
the screen. Hold down the right mouse button in empty space, and drag
the cursor in the direction that allows you to see the hidden portions of
the model.

• The Display toolbar, which appears just above the work area, offers
easy access to block attribute settings. Refer to the MATRIXx Help for
a description of each tool/toolbar button.

• Certain algebraic blocks have display icons that can appear with their
input connections in any of several locations. These include summers,
multiplications, dividers, and so forth. To toggle the icon display,
select the block and type s repeatedly, or change the type using the
Icon Type combo box on the toolbar.

Automatic and Manual Connection Routing
By default, SystemBuild uses automatic connection routing. An algorithm
is used to determine a path that takes the fewest turns, does not overwrite
blocks or other connections, and so forth. The SuperBlock Editor puts a
solid circle on the diagram where signals either come together or separate
(refer to Figure 5-12). This eliminates confusion with signals crossing in a
busy diagram.

Figure 5-12. Diagrammatic Difference in Signals Splitting and Crossing

The results of automatic routing are good for most diagrams, but you might
need to use manual routing—in conjunction with block rotation, direction,
and changing the face of input pins, output pins, and the name—to adjust
the routing for complex diagrams.

Signal splitting Signals crossing

Chapter 5 Blocks

SystemBuild User Guide 5-44 ni.com

There are two ways to enable manual routing:

• Select Connect»Manual Routing.

For this to work, no block or connection objects can be selected.

• Middle-click on a hidden handle on a connection.

Clicking in the middle of a horizontal connection is often successful.

When manual routing is enabled, square handles appear on the connection
lines. Use the middle-mouse button to drag a handle to a new location.
While changing the routing, you may have difficulty “lining up”
connections. In limited circumstances, it might be helpful to select
Options»Snap to disable it. Remember to enable Snap after you have
made your adjustments.

Manual routing does not fix all aesthetic problems. Complex diagrams may
also require a combination of relocating and resizing blocks and adjusting
label display.

Improving the Appearance of a Cluttered Diagram
Figure 5-13 shows an example of an organized, but cluttered diagram. All
elements are shown at normal size, and block 3 is too narrow to display the
algebraic equations. Below are the steps used to improve the appearance of
this diagram.

1. To make the labels more readable, increase the font size to 16 points.
You can do this using the combo box on the Edit toolbar, or you can
place the cursor in the window and type > until the font is the desired
size. (Type < to reduce the font size.)

2. To widen block 3, place the cursor over the block and type w
repeatedly. Alternatively, click on the corner that shows the block ID,
and pull to drag the block wider. Move the blocks so that the labels no
longer overlap.

Turn on the manual routing markers (refer to the Automatic and
Manual Connection Routing section), and use the middle mouse
button to drag the connections so that they no longer overlap the labels,
as indicated by the arrows in ➁.

3. Make some of the blocks taller by dragging upward on the corner by
the ID number, or placing the cursor over the block and typing T.

The diagram should now resemble ➂.

Chapter 5 Blocks

© National Instruments Corporation 5-45 SystemBuild User Guide

Figure 5-13. Modifying a Block Diagram

Chapter 5 Blocks

SystemBuild User Guide 5-46 ni.com

Creating a SuperBlock That Uses the Connection Editor
Extensively

Example 5-5 showcases the Connection Editor. It demonstrates how block
labels and settings affect the appearance of the block diagram.

Example 5-5 Creating SuperBlock Forty

1. Create a new SuperBlock named Forty. Give it 40 inputs and
40 outputs. Set the Input Naming field to Enter Local Label Names.
From the Inputs tab, specify labels as follows: Type f1(1:10) in
cell 1, f2(1:10) in cell 11, f3(1:10) in cell 21, and f4(1:10) in
cell 31. Click OK.

2. Create a gain block named Twenty, and specify 20 inputs and
20 outputs. On the Inputs tab, type t1(1:10) in cell 1 and t2(1:10)
in cell 11. Go to the Outputs tab, and specify the same labels. On
the Display tab, enable Show Output Labels, and set the Input Pins
field to Vector. Click OK.

3. Select SuperBlock Twenty, and drag the corner nearest the ID number
to enlarge it so that all the pins are distinctly shown.

When the finished block is displayed, note that only two inputs pins are
shown. This reflects the fact that two vectors with unique labels are
used. There are 20 pins on the output, as is normal for scalar mode.

4. Create a SIN block with 10 inputs and 10 outputs. Duplicate the block
by placing the cursor over it and typing d.

5. Edit the first SIN block. Name it S1. On the Outputs tab, specify
s1a(1:5) in cell 1, and specify s1b(1:5) in cell 6. On the Display
tab, enable Show Output labels, and set the Input Pins field to Scalar
and the OutPut Pins field to Bundle. Click OK.

6. Name the duplicate SIN block S2.

Your diagram should now look something like Figure 5-14. The
outputs are displayed as a single thick pin. The number 10 indicates the
number of pins in the bundle.

Chapter 5 Blocks

© National Instruments Corporation 5-47 SystemBuild User Guide

Figure 5-14. SuperBlock Forty Before Connections

7. To connect external inputs to Twenty, middle-click in white space to
the left of the block, and then middle-click the block.

The Connection Editor appears. The initial view, ➀, in Figure 5-15,
demonstrates that vectored labels are grouped together by default.

a. Expand a vector (to scalar view) by clicking a filled triangle. Then
compress the vector by clicking a hollow triangle associated with
any label in the vector.

b. Double-click the Add button to create a simple connection from
the external inputs to Twenty (refer to ➁). Expand the f1 and f2
source vectors by clicking the filled triangle beside f1[10] and
f2[10]. Do the same for the t1 destination.

Note that a scroll bar appears above the Cancel button (refer to ➂).
With the vector expanded you can create single connections or
multiple connections.

Chapter 5 Blocks

SystemBuild User Guide 5-48 ni.com

Figure 5-15. Connecting External Inputs to Forty

signal name

number of signals

type

pin number (first in series)

#

#

Click to expand vector

Click to compress vector

First pin in a compressed vector

Single pin in scalar form

simple connection

Chapter 5 Blocks

© National Instruments Corporation 5-49 SystemBuild User Guide

c. With the Add button selected, lasso (drag a selection box) the first
five pins from f1 (➃), and then select the last five pins of t1 (➄).
Connect f1(6:10) to t1(1:5) in the same manner.

d. Click Done.

Twenty external inputs are now connected to Twenty. Next you
connect external inputs to S1.

8. Middle-click in empty space to the left of S1, and then middle-click S1.
In the From, To Field, type 25:32; 1:8. Click Done.

9. Select Twenty and S1, and then raise the Connection Editor.
Double-click Add. Click Done.

SystemBuild connects the first two available pins on each block.

10. Create a connection from external inputs 35:39 to the first five inputs
of S2.

11. Select Twenty and S2, and then raise the Connection Editor. Connect
the last five pins of t2 to the last five pins of S2. Click Done.

The diagram should now resemble Figure 5-16.

Figure 5-16. Diagram Before External Output Connections

Chapter 5 Blocks

SystemBuild User Guide 5-50 ni.com

12. Create external outputs as follows:

a. Create a simple connection between Twenty and the external
outputs. To simplify the appearance, select Twenty, and set the
OutPut Display Mode combo box on the toolbar to Vector.

b. Create the following connections from S1 to the external outputs:
channels 9 and 10 to external outputs 1 and 2, channels 1:4 to 4:7,
and 5:8 to 15:18.

c. Connect S2 to external outputs. When you raise the Connection
Editor, move the scroll bar all the way to the right to view the final
output pins. Connect from (1:5) to (21:25) and from (6:10) to
(36:40). Click Done.

Your connections are complete, but the diagram is disorderly
(refer to Figure 5-17).

Figure 5-17. Finished Diagram Before Appearance Improvement

13. To improve the readability of the outputs, complete the following
steps:

a. Make the SIN blocks taller by placing the cursor over each block
and pressing <T>. Move the blocks as necessary to prevent
overlap.

b. Make block Twenty smaller by selecting it, placing the cursor in
the selection box near the ID number, and dragging it to the
desired size.

Chapter 5 Blocks

© National Instruments Corporation 5-51 SystemBuild User Guide

c. Select Connect»Manual Routing to display the connection
routing marker handles. Use the middle-mouse button to drag
handles to new locations that eliminate overlaps. Use manual
routing to adjust the external outputs so that they do not overlap
the inputs.

d. Select S1, and change the Output Display Mode to Scalar on the
toolbar.

The results are shown in Figure 5-18.

Figure 5-18. Diagram with Resized Blocks and Manual Routing with
Vectorized Output from Twenty

14. Change the Input Display Modes and Output Display Modes on the
toolbar for each block. Check out the Scalar, Vector, and Bundle
settings.

© National Instruments Corporation 6-1 SystemBuild User Guide

6
SuperBlock Timing and
Transformation

SystemBuild provides a variety of SuperBlock types to model both
continuous and discrete nonlinear dynamic systems. This chapter discusses
SuperBlocks types and their intended purpose and attributes.

Types of SuperBlocks
SystemBuild supports the following types of SuperBlocks, which are based
on their timing methods:

• Continuous SuperBlocks

• Discrete SuperBlocks

• Triggered SuperBlocks

• Procedure SuperBlocks

Continuous SuperBlocks
Continuous SuperBlocks model nonlinear dynamic ordinary differential
equations (ODEs) of the form:

Where u is the input vector, x is the state vector, y is the output vector, and
xinit is the initial state provided by the user. You may choose among several
ODE solvers to best approximate the solution to the continuous models.
Recommendations for use of each integration algorithm are given in the
Selecting an Integration Algorithm section of Chapter 8, Simulator Basics.

x0 xinit=

x· f x u,()=

y g x u,()=

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-2 ni.com

Discrete SuperBlocks
Discrete SuperBlocks model systems that sample and hold their inputs
at a specified sample rate. The system can be expressed as a difference
equation, where k is the sample index:

Attributes required to define a discrete SuperBlock are:

• Sample Period—The sample interval (inverse of rate) of the discrete
SuperBlock.

• Sample Skew—The offset between the simulation start time and the
first execution of the current SuperBlock.

• Enable Signal—Determines whether a SuperBlock is free-running or
enabled. You may specify None (the default), Parent, or a pin number
(an input signal).

Selecting None results in a free-running system. This means that the
SuperBlock is always enabled and executes periodically at its sample
period, beginning at the specified first sample (skew) and continuing
throughout the simulation.

Selecting Parent or specifying an input signal creates a system that
runs periodically, but only when it is enabled by its parent SuperBlock
or the specified input signal. A SuperBlock enabled by its parent
executes at its sample interval as long as its parent is enabled. A
SuperBlock enabled by an input signal executes at its sample interval
as long as the enable signal is TRUE.

• Group ID—Allows you to assign a SuperBlock and its primitive
blocks to a specific processor group. This field is enabled whenever
the SuperBlock type is discrete. By default, all systems of the same
rate are grouped in the same subsystem, so this setting allows you
to override the arbitrary grouping. This parameter is useful for both
multiprocessing and for controlling the size of generated procedures
during the AutoCode code generation process.

x0 xinit=

xk 1+ f xk uk,()=

yk g xk uk,()=

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-3 SystemBuild User Guide

Triggered SuperBlocks
Triggered SuperBlocks are discrete in nature but do not execute
periodically. They are executed once each time the leading edge of the
trigger signal is detected—whenever it transitions from negative to positive
(≤0 to > 0). Alternatively, a triggered SuperBlock can have asynchronous
output posting. Asynchronous triggered SuperBlocks are executed once
each time either the leading edge or the trailing edge of the trigger signal is
detected.

All discrete dynamic equations for blocks nested within a triggered
SuperBlock are evaluated assuming a sample interval of 1.0 second. As a
result, dynamic blocks that incorporate the sample rate into their equations,
such as the discrete integrator, should be used with care because triggered
SuperBlocks are not executed periodically.

Attributes required to define a triggered SuperBlock are:

• Trigger Signal—You may specify either parent or a pin number to be
used as the trigger signal.

• Output Posting— This topic is explained in more detail in the Timing
of Trigger Subsystems section. Four choices are available:

– After Timing Req.

– As Soon as Finished

– At Next Trigger

– Asynchronous

• Timing Requirement—When Output Posting is After Timing Req.,
the timing requirement value is the elapsed period of time between the
start of execution for the triggered subsystem and the time when the
outputs of the triggered subsystem are available to other system
elements. The lower the timing requirement, the higher the priority
of the subsystem.

Procedure SuperBlocks
Procedure SuperBlocks are special constructs designed to represent
generated software procedures that can be called as reusable functions
in the code generated by AutoCode.

Unlike types of SuperBlocks, one function is generated for each procedure
SuperBlock, and multiple references to the same procedure reuse the single
function. Using procedure SuperBlocks can reduce the generated code size
if SuperBlocks are referenced multiply.

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-4 ni.com

There are two ways to use procedure SuperBlocks in a model:

• A direct reference

• A reference through a Condition block

For the most part, procedure SuperBlock behavior is consistent for both
types of references, but some differences exist. These are detailed in the
Condition block discussion in the MATRIXx Help.

There are six classes of procedure SuperBlocks: Standard Procedure,
Macro Procedure, Inline Procedure, Background Procedure, Startup
Procedure, and Interrupt Procedure. However, the last three classes are
asynchronous SuperBlocks. Of these, only standard and macro procedure
SuperBlocks can be referenced from a Condition block. Standard and
macro procedures are general-purpose elements that can be used within
discrete or triggered SuperBlocks or any type of procedure SuperBlock.
The startup, background, and interrupt procedures are special constructs
that enable you to model real-time asynchronous tasks in code generated by
AutoCode.

All procedure SuperBlock references are treated as individual subsystems
and are executed completely as if the SuperBlock reference were an
intrinsic block within the parent. This treatment facilitates the mapping of
these SuperBlocks to standalone reusable functions. The exception to this
is the inline procedure SuperBlock (refer to the Inline Procedure section).

Another characteristic of procedure SuperBlocks is that they inherit timing
attributes, such as the sample interval, from the parent SuperBlock. If the
same procedure is referenced in multiple SuperBlocks with different rates,
each reference inherits a different rate.

Discrete, triggered, or enabled SuperBlocks with identical timing attributes
are typically combined into collective subsystems from which the blocks
are sorted to minimize algebraic loops. Since procedures must execute
completely in one pass, care must be taken to avoid algebraic loops.

The following is a list of limitations of procedure SuperBlocks.

• Procedure SuperBlocks cannot be used in any continuous SuperBlock
or as the top-level SuperBlock.

• Procedure SuperBlocks are the only type of SuperBlock that can be
nested within another procedure SuperBlock.

• The ReadVariable and WriteVariable blocks (refer to the MATRIXx
Help) are provided for communicating information to and from
procedures in a manner that is similar to accessing global data from a

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-5 SystemBuild User Guide

function. However, the read and write sequence might not occur in the
order that you would assume.

• The requirement to treat procedures as standalone functions prohibits
using DataStore blocks (refer to the Using DataStores section) in
procedures.

Standard Procedure
The standard procedure SuperBlock is a generic utility that may be nested
within any discrete, triggered, or procedure SuperBlock. A standard
Procedure inherits the attributes of the parent SuperBlock. These are the
only procedure SuperBlocks supported within the Condition block.

Macro Procedure
The macro procedure behaves the same as a standard procedure during
SystemBuild simulations. However, AutoCode substitutes a user-supplied
macro statement in place of a call to a generated procedure. As a result, you
can directly call a special I/O or utility function from the generated code
and replace that equivalent behavior with SystemBuild blocks during
simulation.

The procedure SuperBlock catalog item must define the call to the macro.
Like all other SuperBlocks, it must contain at least one block, even if only
the procedure is of interest.

• The macro string is specified on the Code tab.

• The first line contains the name of the macro, terminated with a
semicolon.

• All subsequent lines are arguments to the macro, one per line, each
terminated with a semicolon.

Example 6-1 Macro Procedure SuperBlock

Type the following in the Code tab:

Read_A0;

Channel_1;

The previous code results in the following generated C code:

Read_A0(Channel_1, in_signal, out_signal);

Input and output variables are listed individually following the optional
arguments.

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-6 ni.com

You must input the actual macro code into either an include (*.h) file or
directly into the source code file.

For Ada, a simple procedure call is generated. It is up to you to fill in the
definition of the procedure.

The macro may also be redefined with pre-processor directives from within
the AutoCode template file. Refer to the AutoCode Reference manual for
more information on importing macro code into generated code.

Inline Procedure
In contrast to all other classes of procedure SuperBlocks, the inline
procedure is not treated as an individual subsystem. The primitive blocks
nested within an inline procedure are merged into the subsystem of the
parent SuperBlock. As a result, using of inline procedures, versus standard
procedures, influences the block execution order and can help eliminate
algebraic loops in many cases. This treatment, however, comes at the
expense of generated code size. AutoCode does not create a reusable
procedure for inline procedures.

This treatment, however, only applies to directly referenced procedure
SuperBlocks. If an inline procedure is referenced through a Condition
block, it is treated like a standard procedure and an individual subsystem is
created for that particular reference.

Asynchronous Procedure
Although there is no asynchronous procedure class, background, startup,
and interrupt procedures are asynchronous procedures.

Background Procedure
The background procedure represents the computations that are to be
performed when the system is otherwise idle. Essentially, the background
procedure is the lowest priority task and is executed only when no other
tasks require execution.

A background SuperBlock cannot have external inputs or outputs and is
required to interact with other system elements through ReadVariable and
WriteVariable blocks. You can construct hierarchies of standard and macro
procedures within the background SuperBlock. You cannot include
dynamic blocks with states in a background SuperBlock, although
state-like behavior may be achieved with variable blocks. UserCode blocks

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-7 SystemBuild User Guide

(UCBs) or BlockScript blocks in background procedure SuperBlocks
cannot have states.

The background procedure is primarily a concept specific to AutoCode and
is not supported in the SystemBuild simulator.

Startup Procedure
The startup SuperBlock is a means by which initialization calculations can
be performed before the beginning of a simulation.

A startup SuperBlock cannot have external inputs or outputs and only
interacts with other system elements through the ReadVariable and
WriteVariable blocks. Variables initialized from a startup procedure may
be used as %Variables in other SuperBlocks or may be accessed with
ReadVariable blocks. You can construct hierarchies of standard and macro
procedures within the background SuperBlock. You cannot include
dynamic blocks with states in a startup procedure SuperBlock, although
state-like behavior may be achieved using variable blocks. UserCode
blocks (UCBs) and BlockScript blocks in startup procedure SuperBlocks
cannot have states.

Interrupt Procedure
The interrupt procedure represents the computations that are to be
performed within an asynchronous interrupt service routine (ISR) in a
real-time environment. As a result, the interrupt procedure is primarily
a concept specific to AutoCode and is not supported in the SystemBuild
simulator.

The Interrupt field can be used to associate interrupt SuperBlocks with
specific interrupts in the AutoCode scheduler template. Note that the
handling of ISRs is platform and operating-system specific and requires
a knowledge of these software concepts.

An interrupt SuperBlock cannot have external inputs and outputs. It
must interact with other system elements through ReadVariable and
WriteVariable blocks. You can construct hierarchies of standard and
macro procedures within the interrupt SuperBlock. You cannot include
dynamic blocks with states in an interrupt SuperBlock, although state-like
behavior may be achieved using variable blocks. You can construct
hierarchies of standard and macro procedures within the interrupt
SuperBlock. UserCode blocks (UCBs) or BlockScript blocks in startup
procedure SuperBlocks cannot have states.

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-8 ni.com

Note We encourage you to use asynchronous triggered SuperBlocks instead of interrupt
procedures when possible because asynchronous triggers provide a more flexible,
simulatable solution without most of the restrictions of interrupt procedure SuperBlocks.
For example, they function correctly in simulation and in standalone AutoCode situations.
They are fully supported by HyperBuild, and interrupt procedures are not. And, they share
I/O normally with other SuperBlock types rather than communications being restricted to
ReadVariable and WriteVariable blocks.

Effects of Nesting on Enabled and Trigger SuperBlocks
Enabled (discrete with either parent or pin number enable signal) and
trigger SuperBlocks can inherit activation signals from their parent
SuperBlocks. Table 6-1 shows the relationship between parent and child
SuperBlocks with regard to inheritance of trigger and enabling signals. For
each combination of parent and child status, the entries in the table show
whether the child SuperBlock is free-runnivng, enabled, triggered, or idle
(never executed).

Table 6-1. Relationship between Parent and Child Discrete and Trigger SuperBlocks

Parent→

Child ↓

Discrete Trigger

Parent None Pin # Parent None Pin # Cont Top

D
is

cr
et

e Parent P F E F F E F F

None F F F F F F F F

Pin # E E E E E E F E

T
ri

gg
er

Parent N N N N N T N N

None N N N N N N N N

Pin # T T T T T T T T

Key to table entries:
E = Enabled P = E if first non-DP parent is E, else F
F = Free-running T = Triggered
N = Never executed

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-9 SystemBuild User Guide

Using DataStores
The DataStore block provides an array of scalar memory elements or
registers in memory, which may be used in discrete SuperBlocks only.
These registers are maintained as part of the simulation (and the AutoCode
real-time scheduler), and do not exist as separate blocks. Especially in the
AutoCode context, this property calls for special simulation timing
considerations (refer to the AutoCode Timing Properties section).

Note In most cases, using ReadVariable/WriteVariable blocks provides a simpler, though
less deterministic, way to pass data between subsystems.

Simulation Timing Properties
This section discusses simulation timing properties, including subsystems
and DataStores. Refer to the Dividing Your Model into Subsystems section
of Chapter 8, Simulator Basics, and the Using DataStores section of this
chapter. At the end of the section, we present an example that illustrates
asynchronous timing.

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-10 ni.com

Timing of Discrete Subsystems
Figure 6-1 illustrates the timing by which discrete subsystems are updated.

Figure 6-1. Simulation, Discrete Subsystem Output Timings

In simulation, DataStores are written by a subsystem at the same time
the subsystem updates its outputs. In keeping with the SystemBuild
requirement that the outputs of every subsystem should be asserted
every cycle, the scheduler performs DataStore writing as part of
refreshing zero-order holds for all outputs.

The situation differs according to whether the cdelay simulation keyword
is specified to be TRUE (or actiming, which sets cdelay to TRUE).
If cdelay is specified, in order to approximate the situation of running
AutoCode generated code, a nominal computational delay time is added to
the execution time of a subsystem, and the subsystem posts its outputs only
at the time it is next scheduled for execution. By contrast, when cdelay is
set to FALSE, no delay is added, the computation time is assumed to be
instantaneous, and the outputs are posted (and DataStores written),
immediately.

with cdelay=1

Key: Inputs sampled and subsystem started

Computation time, which may be greater or less than minor cycle for
cdelay = 1, is assumed to be 0 for cdelay = 0

Outputs posted and DataStores written.

with cdelay=0

Scheduler Minor Cycle

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-11 SystemBuild User Guide

Timing of Trigger Subsystems
The timing of trigger subsystems is shown in Figure 6-2. The four types are
defined in terms of their output posting requirements.

Figure 6-2. Trigger Subsystem Output Timings

At Next Trigger
The at next trigger (ANT) subsystem has a variable output timing in that
the outputs of a given cycle are only posted when the next trigger is given
for the subsystem.

At Next Trigger (ANT)

Key: Trigger received, inputs sampled and subsystem started

Computation time (shown where relevant)

At Timing Requirement (ATR), TR=2

As Soon As Finished (SAF) or
Asynchronous (ASYNC),
if triggered by a normal signal

Scheduler Minor Cycle

Outputs generated in response to the indicated subsystem trigger are
posted.

Asynchronous (ASYNC)

If triggered by a state event

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-12 ni.com

At Timing Requirement
For an at timing requirement (ATR) subsystem, you specify an amount of
time to elapse from the beginning of execution to the time that the output is
posted. Use this type of subsystem when determinacy is an issue and is
more important than sheer performance.

As Soon As Finished
The outputs are of an as soon as finished (SAF) subsystem are posted at
the beginning of the next minor cycle after the subsystem finishes its
computations. Use this type of subsystem when performance is more
important than determinacy.

Asynchronous
An asynchronous (ASYNC) trigger subsystem differs from other trigger
subsystem types, both in the way it handles simulation and the way it is
handled in AutoCode. Asynchronous SuperBlocks are designed to replace
the interrupt procedure SuperBlocks. Not only can they maintain the
asynchronous aspect of the interrupt procedure SuperBlock, but they can
support model inputs and outputs, dynamic blocks, states (including states
in UCBs), and so forth.

For simulation, the asynchronous subsystem is both leading and trailing
edge triggered—that is, this subsystem is scheduled if the triggering signal
transitions from negative to positive (≤ 0 to >0) and if it transitions
from positive to negative (>0 to ≤0). Also, the execution and posting
requirements for asynchronous subsystems differ depending on the type
of signal used for triggering.

• If the triggering signal is the output of a normal primitive block or
external input, the subsystem is treated the same as a SAF triggered
subsystem, except its priority is higher and the triggering is
double-edged.

• If the triggering signal is a state event (refer to the State Events section
of Chapter 13, Advanced Simulation), then the subsystem executes
outside of the scheduler at the exact instance when the event occurs. If
the triggering signal is attached to a ZeroCrossing block and a variable
step integrator is used, the asynchronous trigger subsystem functions
as an interrupt service routine in the simulator, where the simulated
interrupts (from the ZeroCrossing block) occur asynchronously with
the periodic portions of the model.

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-13 SystemBuild User Guide

For AutoCode purposes, the asynchronous subsystem is suited to serve
as an interrupt service routine. In the AutoCode environment, the code
generated to execute this type of SuperBlock differs based upon the source
of the triggering signal (as opposed to its type since state events are not
supported in AutoCode).

• If the trigger source is internal to the model (that is, it is an output
from another primitive block or a SuperBlock from this or another
subsystem, then the ASYNC code is scheduled the same as a SAF
triggered subsystem, except its priority is higher and the triggering is
double-edged.

• If the trigger source is an external input that has not been acted upon
by a primitive block (even if that input has been brought through
several layers of hierarchy), the AutoCode scheduler does not schedule
this subsystem. AutoCode generates a wrapper for the asynchronous
subsystem that is intended to be used as an interrupt procedure in your
system.

Example: Using an Asynchronous Triggered SuperBlock
For this example, assume a simple continuous plant with transfer function
defined as:

Assume we need a discrete controller that can have a sample period no
larger than Ts = 0.4[sec] The controller is simple, and the overall system
dynamics can be considered open loop. The controller task is to provide a
step input to the plant at a precise moment (not necessarily a multiple of the
sampling interval Ts).

A sensor output is available and it detects the starting time at which we need
to apply the step input. The starting time is the first zero crossing of a
sinusoidal signal sgn = sin(2*pi*f + phase), where f = .5 [Hz] and
phase = pi/2.

While modeling the system, we should have a practical implementation in
mind, such as a target real-time controller executing the generated code
from the graphically designed controller.

G s() 4
s 4+
-----------=

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-14 ni.com

To load the file into the editor, complete the following steps:

1. From the Xmath command area, copy the catalog file to your local
system as follows:

copyfile

"$SYSBLD/examples/manual/async_trig_ex1.cat"

2. From the Catalog Browser, load the file.

3. Open SuperBlock async_trig_ex1 in the editor.

Figure 6-3. Asynchronous Trigger Example

As shown in Figure 6-3, in order to demonstrate the difference between an
SAF triggered system and an asynchronous triggered system, both
triggered systems are built into the controller so that you can compare
simulation outputs.

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-15 SystemBuild User Guide

The catalog hierarchy is as follows:

Note The numbers on the left in the previous section represent the subsystem number. The
indent level represents the relative position of the SuperBlock in the SuperBlock hierarchy.

Period_Discr_Ctrl contains the gain block dummy_gain. Its purpose is to
force execution of SAF_Trig_Sys every 0.4[s] (the sampling period Ts).
After code generation for Period_Discr_Ctrl, the scheduler frequency is set
to 1/Ts = 2.5 [Hz], which would otherwise become the rate of our real-time
controller. We need to add the dummy gain in our model in order to match
sim(), which possibly has a faster scheduler due to the continuous
top-level SuperBlock, with AutoCode (Ts = 0.4[s]). Of course Ts = 0.4[s]
was one of the requirements for the design.

Note that the asynchronous triggered SuperBlock (ATSB) is contained as
part of the discrete controller. The location of this SuperBlock is immaterial
for simulation purposes, as long as the triggering signal is the output of
the ZeroCrossing block. When code is later generated for the discrete
controller, the triggering signal for the ATSB is an external input,
which causes AutoCode to generate a routine suitable for hooking into
an interrupt source as the triggering device for the ATSB subsystem.
By using this mechanism, it is possible to use the asynchronous triggered
SuperBlock to both simulate and generate code for interrupt handlers.
For the simulation, we use the output of Async_Trig_Sys as the stimulus
to the plant. The output of SAF_Trig_Sys is plotted for comparison.

To simulate the model, complete the following steps:

1. From the Xmath command area, specify the time vector and the initial
value of the %Variable phase:

t = [0:.05:1.5]';

phase=90;

2. Simulate the model:

[te, y] = sim("async_trig_ex1", t,{extend, vars});

0 async_trig_ex1 Top-level SB

1 Period_Discr_Ctrl Discrete controller

2 Async_Trig_Sys Asynchronous triggered system

3 SAF_Trig_Sys Triggered system

0 Plant_and_Sensor Continuous plant and sensor

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-16 ni.com

3. Plot the results:

plot(te, y, {strip, marker, x_lab = "time [s]",...

y_lab = ["Monitored param", "Async Trig system",...

"SAF Trig system", "Plant out"] })?

Figure 6-4 shows the following signals:

Figure 6-4. Asynchronous Triggered Timing versus SAF

Monitored param: A hypothetical monitored signal

Async Trig system: Output from the asynchronous triggered system

SAF Trig system: Output from the SAF triggered system

Plant out: Output from the plant

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-17 SystemBuild User Guide

We can see the unwanted delay of the step signal coming from the SAF
triggered system compared to the step signal coming from the
asynchronous triggered system. This is the main benefit in using an
asynchronous triggered SuperBlock for applications similar to our
example.

Try the simulation with different values of the %Variable phase and observe
the change in the “unwanted delay” coming from the SAF triggered system.

If you want to know how AutoCode handles this situation, refer to the
AutoCode and the Asynchronous Triggered System section.

Execution of Procedures During Simulation
The simulation support of background and interrupt procedures cannot be
accurately represented during a non-real-time simulation. As a result, these
procedure SuperBlock references are not executed during simulation.

Typically, the background and interrupt procedures are referenced directly
from within the part of your model that you use to generate code (with
AutoCode), but this reference is not executed by the simulation.

Figure 6-5 illustrates the sequence of initializations that occur in a
SystemBuild simulation. Notice that only startup procedure SuperBlocks
are supported during simulation.

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-18 ni.com

Figure 6-5. Pre-Simulation Initialization Steps

Initialize Variables
from Xmath

Execute Startup
Procedures

Parameterize Model
vars = 1-2

Trim Outputs
initmode = 1-3

Simulation Time Loop

Term Update

Put Variables to Xmath;
vars = 2

End

Start

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-19 SystemBuild User Guide

AutoCode Timing Properties
This section provides information on the following topics:

• AutoCode Real-time Application Execution Sequence

• AutoCode Timing Features Associated with Using DataStores

• AutoCode and the Asynchronous Triggered System

AutoCode Real-time Application Execution Sequence
Figure 6-6 shows the AutoCode real-time execution sequence, including
startup, background, and interrupt procedure SuperBlocks.

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-20 ni.com

Figure 6-6. AutoCode Real-Time Application Execution Sequence

Interrupt Service
Routine C

System
Hardware Initialization

Background
Procedure

Interrupt Service
Routine B

AutoCode
Scheduler

TriggeredPeriodic Enabled

Power On

Interrupt Requests

Asynchronous Interrupts

Timer Interrupt

(can go to any

1

100 Hz 50 Hz 10 Hz

Start-up Procedure

A

B

C

)

1

1

1

1

Interrupt Service
Routine A

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-21 SystemBuild User Guide

AutoCode Timing Features Associated with Using DataStores
Timing features associated with using DataStores that are peculiar to
AutoCode are illustrated in Figure 6-7, Figure 6-8, and Figure 6-9. In this
example, two different subsystems are writing to the same DataStore
location, and the differences between the timings of the subsystems create
situations of interest. These examples illustrate that the situation regarding
DataStore timing is always determinate and why it is prudent to avoid
situations where two subsystems write into the same DataStore location
unless you can ensure there is no conflict (for example, by making it
impossible to trigger or enable them at the same time).

Figure 6-7. DataStore Timings

In Figure 6-7, Subsystem 1 runs faster than Subsystem 3, and thus has
higher priority, allowing it to run before Subsystem 3 each time they are
both primed for execution together. In other words, in an AutoCode
environment, the faster subsystem regularly preempts the activities of the
slower subsystem.

Whenever Subsystem 3 runs to completion, it posts its outputs in a
DataStore for transmission to other subsystems and to itself. This is
indicated by X in the diagram. Although the output of Subsystem 3
might become available before the next execution of Subsystem 1 (as at A),
this cannot be guaranteed (as at B, when the occasionally triggered

Preempted: ready to run but waiting for higher
priority activities to finish

Slow subsystem writes to the DataStore

Fast subsystem reads the DataStore

Slow subsystem reads from its own DataStore after a
one-cycle delay

A B

X

Y

Z

Y Y Y Y

ZZZ

Subsystem 1

Subsystem 2

DataStore

Subsystem 3

Key:

X XX

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-22 ni.com

Subsystem 2 also preempts Subsystem 3). Therefore, to guarantee
determinacy, the data from the DataStore is not made available to
Subsystem 1 or other subsystems until the next time that Subsystem 3 is
primed for execution. This same thing would happen with any subsystem
if the outputs of Subsystem 3 did not go through a DataStore.

The DataStore functions as a one-cycle delay for the Subsystem 3 outputs
that go return to Subsystem 3 because the outputs become available the next
time that Subsystem 3 is primed for execution, as shown at location Z in
Figure 6-7. Without the DataStore, the outputs of Subsystem 3 would be
available within the subsystem on the same cycle as they were generated.

Figure 6-8 illustrates how two different subsystems write to the same
DataStore. In this illustration, Subsystem 1 executes each third scheduler
minor cycle, and Subsystem 2 executes each fifth minor cycle. There is no
skew time difference between them, but they both write to the same
DataStore register element. When they are initiated for execution,
Subsystem 1 takes priority, executes first, and has its data posted into the
DataStore on its next wakeup time (point A). Soon Subsystem 2 gets its
opportunity to execute, and its data is posted at its next wakeup time
(point B).

Figure 6-8. Writing into a DataStore Register from Two Different Subsystems

A C1B C2 E FD

X

Y

DataStore update from Subsystem 1

DataStore update from Subsystem 2

Preempted, waiting to run

Data is lost

Available outputs from Subsystem 1

Available outputs from Subsystem 2

*

Y Y
*

Scheduler Time

Subsystem 1

DataStore

Subsystem 2

Key:

X X X XX

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-23 SystemBuild User Guide

In the meantime, Subsystem 1 has executed again, and its data becomes
visible at point C1. Before Subsystem 2 can have its data posted again
(at point D), the data from Subsystem 1’s third execution is posted in the
DataStore location (point C2). At point D, the output of Subsystem 2
becomes visible, to be overwritten again by the output of Subsystem 1
at point E. Finally (point F), both subsystems post their outputs to the
DataStore simultaneously. Subsystem 1 has a higher priority and prevails.
The output of Subsystem 2 at this time never appears in the DataStore.

This illustrates the way that data in the DataStore may be visible for uneven
time intervals, but the situation is always determinate. Figure 6-9 illustrates
a situation where data from a slow subsystem might never show up in the
DataStore and how to work with this situation.

Figure 6-9. Enabled Subsystem Writing into a DataStore

Enabled Subsystem 1 runs exactly twice as fast as free-running
Subsystem 2, and thus has priority for execution. However, both
subsystems have the same skew or start time and thus are primed for
execution at the same time. This fact is crucial to the discussion.

When Subsystem 1’s first data output is ready, Subsystem 2’s time has not
yet arrived for having its data posted, and the Subsystem 1 output is posted
without any conflict. But at point B, both Subsystem 1 and Subsystem 2

A B C

Enable Subsystem 1

Subsystem 1

DataStore

Subsystem 2

Key:
X

Y

DataStore update from Subsystem 1

DataStore update from Subsystem 2

Subsystem 2 is preempted for this time

Outputs generated but never posted

Available outputs from Subsystem 1

Available outputs from Subsystem 2

*

Y

X X

*

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-24 ni.com

receive a wakeup signal at the same time, and Subsystem 1 executes first.
At the wakeup point, data from each subsystem from a previous cycle is
ready to be posted simultaneously. The resolution is made in terms of data
priority, which has the same ordering as execution priority: the data from
Subsystem 1 is posted, and that from Subsystem 2 is lost.

This situation continues as long as Subsystem 1 is enabled and running, but
when the enabling signal for Subsystem 1 is removed, its outputs stop being
posted and the outputs of Subsystem 2 are posted (point C) in the usual
manner.

AutoCode and the Asynchronous Triggered System
What does Autocode do in order to match the simulation results we
obtained in the Example: Using an Asynchronous Triggered SuperBlock
section?

While generating code for the discrete controller Period_Discr_Ctrl,
the call to the Async_Trig_Sys subsystem is not included in the
SCHEDULER() function but is left as an interrupt service request (ISR)
call for the real-time controller. This way, the subsystem Async_Trig_Sys
is executed almost immediately after the triggering event (in our case the
zero crossing of the sine wave) instead of waiting for the next sample, as
SAF_Trig_Sys does. If you are licensed for the AutoCode option, generate
code and examine the results to confirm this.

This example is generic and simple. It does not show any relation between
the periodic controller and the plant nor between the asynchronous
triggered controller and the periodic controller. Because such relations are
present in many applications, it is important to recall that the asynchronous
triggered system is immediately available after servicing the ISR.

 SuperBlock Transformation
Each SuperBlock has computational timing attributes—continuous or
discrete, triggered, and so forth. SystemBuild provides a powerful feature
that enables you to transform SuperBlocks from continuous to discrete or
from one discrete rate to another.

In this section, we discuss the following topics:

• Transformation Limitations and Implications

• Transformation Methods

• Undoing a Transformation

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-25 SystemBuild User Guide

Transformation Limitations and Implications
Transformations may be between continuous and discrete SuperBlocks or
between two different discrete rates. The implications vary depending on
the types of blocks in the model. Algebraic, logical, and other blocks
without dynamics or memory are unaffected by transformation.

Limitations
• The following blocks are supported only in continuous SuperBlocks

and may not be transformed to discrete: ZeroCrossing and Implicit
UCBs.

• The following blocks are supported only in discrete SuperBlocks and
may not be transformed to continuous:

– STD (State TransitionDiagram), DataStore, and FuzzyLogic
blocks

– Signal TypeConversion blocks

– IfThenElse, While, Break, and Continue blocks

– Condition blocks

– Procedure SuperBlock references

Dynamic Blocks
Most dynamic blocks (TimeDelay and integrators) maintain their
coefficients unchanged, except for the compensation for the new sampling
interval (T).

Three dynamic blocks: StateSpace, NumDen, and PoleZero blocks, require
new coefficients. The method for transforming these three types of blocks
between continuous and discrete is based on Tustin’s rule (also known as
bilinear or trapezoidal). The transformation used between continuous and
discrete is:

(6-1)

SystemBuild performs transformations between discrete rates by first
converting the current rate to continuous time and then converting from
continuous time back to discrete with the new rate (refer to Example 6-2).

Note When transforming from discrete to continuous or discrete to discrete, the new rates
and coefficients must be applied with caution. During the transformation, the model moves

s 2 z 1–()
T z 1+()
--------------------=

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-26 ni.com

from the z domain to the s domain. Inaccurate results can be generated from StateSpace,
NumDen, and PoleZero blocks.

Example 6-2 Transforming a Block

Assume a block sampling at 0.1 seconds in Num/Den format with transfer
function in the z domain = 1/z2. We want to either change the sampling
rate or convert it to continuous. The resulting transfer function in the s
domain is:

This continuous block represents a non-minimum phase system that
approximates neither the step nor the impulse response of the discrete
system with transfer function = 1/z2, which one would assume to be a
two-sample delay.

However, the continuous subsystem does approximate a two-sample delay
when provided with sinusoidal inputs.

The better approach when transforming discrete rates is to go back to the
original continuous system and allow SystemBuild to apply Tustin’s rule
with the new sampling rate.

Gain Block
The Gain block is transformed using the pure z transform. This transform
method is impulse-invariant, and it preserves the frequency domain
characteristics of the transfer function, such as damping ratios and damping
frequencies.

Integrators and PID Controller
Blocks that contain integrations—Integrator, LimitedIntegrator, and
PIDcontroller—retain the same coefficients and are simply changed to
their discrete equivalents. You can select a discrete integrator from the
block Parameters tab. Integrators for these blocks are:

1 Forward Euler

2 Backward Euler (default)

3 Tustin (trapezoidal)

s 20–()2

s 20+()2

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-27 SystemBuild User Guide

Transformation Methods
You can transform SuperBlocks in several ways:

• Transform nonlinear dynamic systems from Xmath using the lin()
and discretize() functions (refer to Chapter 10, Linearization and
the MATRIXx Help).

• Use the Transform option on the Tools menu in the Catalog Browser.

• Change the SuperBlock type from the SuperBlock Properties dialog.

Note Transforming a SuperBlock overwrites the old entry in the SuperBlock catalog.
The system does not keep a copy of the old SuperBlock. It is wise to make a copy of a
SuperBlock before transforming it. From the editor, select File»Update, and then save
the SystemBuild catalog before proceeding with your transformation.

Transformation from the Catalog Browser
To make a transformation from the Catalog Browser, complete the
following steps:

1. In the Catalog Browser, select the SuperBlock(s) you want to
transform. If you want to transform hierarchy, select Edit»Hierarchy
Select Mode before making a selection.

All the SuperBlocks in the hierarchy are transformed to the new
settings. The only restriction is that the hierarchy cannot contain any
state transition diagrams or DataStores.

Additionally, if any of the SuperBlocks being transformed are trigger
SuperBlocks, they become enabled SuperBlocks during the
transformation.

2. Select Tools»Transform.

The Transform SuperBlock dialog box appears.

3. Change the block type and other fields as appropriate:

• Discrete to Discrete Transformation: Rate only or Rate and Block
coefficients.

Coefficients apply for NumDen, StateSpace, and PoleZero blocks
in a discrete-to-discrete transformation. Frequency-normalized
systems require a rate-only transformation.

• Transform Initial Conditions (of StateSpace blocks). Enable or
disable. Refer to the Initial Condition Transformations section.

• Sample Period (0 = continuous).

• Sample Skew (the first period).

Chapter 6 SuperBlock Timing and Transformation

SystemBuild User Guide 6-28 ni.com

This dialog box also allows you to provide attributes for trigger and
procedure SuperBlocks. For additional help, click the Help button.

Transformation from the SuperBlock Properties
Dialog
You also can transform a SuperBlock from the SuperBlock Properties
dialog.

To use the SuperBlock Properties method, complete the following steps:

1. Open the SuperBlock Properties dialog.

2. Click the Type field combo box, and select the SuperBlock type.

3. Type Sample Period and Sample Skew.

While the methods for changing the type is similar in either dialog, the
results can be somewhat different. Using the SuperBlock Properties dialog,
only the current SuperBlock being edited is transformed. However, using
the Catalog Browser provides the option of transforming multiple
SuperBlocks, including lower-level SuperBlocks. Notice that with both
methods, the transformed SuperBlocks overwrite the original SuperBlocks.

If you change the rate from the SuperBlock Properties dialog, however, the
changes are more restricted.

• Only the current SuperBlock is transformed: no hierarchy may be
selected for transformation. However, timing information for
Condition blocks and procedure SuperBlocks that are direct children
of this block are changed.

• Initial conditions are not transformed.

• If the rate is changed from one discrete rate to another (where both are
nonzero), the rate is updated, but no transform occurs. There is no
change in dynamic block coefficients. This lets you preserve sample
rate normalized systems.

• Changing between SuperBlock types in this dialog box may not be
possible due to insufficient information for the transformation. You
will be notified when this condition exists and instructed on how to
perform an alternative method of the desired transformation.

Chapter 6 SuperBlock Timing and Transformation

© National Instruments Corporation 6-29 SystemBuild User Guide

Initial Condition Transformations
When you enter a SuperBlock that has been transformed, it appears
identical to a SuperBlock originally created at that rate, with the following
exception. If the SuperBlock was transformed from the Catalog Browser
transform tool and Transform Initial Conditions was enabled, then all
StateSpace blocks in the transformed SuperBlock(s) have an Initial
Conditions tag added to their initial conditions in the block parameter
dialog, identifying the rates from which the SuperBlock was transformed.

The initial conditions themselves are not changed immediately, but the
Initial Conditions tag is a reminder that they will be transformed at
simulation time. If you later modify the initial conditions of a modified
StateSpace block in a transformed SuperBlock, the initial conditions are
henceforth assumed to correspond to the current rate of the SuperBlock,
the tag disappears, and no transformation occurs at simulation time.

Undoing a Transformation
• You cannot undo a transformation that you initiate from the Catalog

Browser.

• Transformations initiated from the SuperBlock Properties dialog box
can be undone with the general function Edit»Undo All. As the name
implies, the SuperBlock reverts to its state at the time the display was
last updated to the catalog. All changes to the SuperBlock and its
displayed children disappear.

© National Instruments Corporation 7-1 SystemBuild User Guide

7
SystemBuild Access

SystemBuild Access (SBA) is a subset of Xmath commands and functions
that access the SystemBuild catalog database from the Xmath command
area. SBA allows you to create blocks, and modify, query, and delete
SystemBuild objects. Almost every SuperBlock Editor function has an
SBA equivalent.

The main topics of this chapter are as follows:

• Overview

• SBA Syntax

• Basic SBA Tasks

• Using SBA

• Tutorial

Overview
You can enter SBA commands and functions directly into the Xmath
command area, execute them from within MathScripts, or call them from
an Xmath user callable interface (UCI). In all cases SystemBuild must be
running. You can use SBA to automate editing, check model consistency,
query for model content, and enable interoperability between SystemBuild
and other vender-supplied tools. When you combine SBA commands
with Xmath commands and functions to create looping and branching
constructs, you can create scripts to automatically create SystemBuild
models with scalable structures.

Note Most blocks are supported by SBA, even custom blocks you create yourself.
However, IA icon blocks are not supported. Refer to the MATRIXx Help and the
SystemBuild Access Support section of Chapter 19, Custom Palettes and Blocks,
for more information.

Chapter 7 SystemBuild Access

SystemBuild User Guide 7-2 ni.com

Figure 7-1 shows how SBA fits into the MATRIXx paradigm. A
MathScript containing SBA commands and functions is executed and
interpreted by Xmath. The interpreted SBA outputs are the same as the
outputs of the SystemBuild Editor, including SuperBlocks, blocks,
connections, STDs, and other SystemBuild block diagram objects used to
create or modify SystemBuild models.

Figure 7-1. SBA MathScript Blocks in the MATRIXx Context

Figure 7-2 shows how you can use SBA to extend the SystemBuild
paradigm to allow the results of a simulation to change the model. In this
scenario, a MathScript executes a simulation. The MathScript can evaluate
sim() results and then execute SBA code that modifies the model before
the next simulation is started.

Figure 7-2. Typical SBA Program Used in a SystemBuild Application

SBA

Xmath

SystemBuild Catalog

MATRIXx Domain

Operating System Domain

User-authored

User Application
(Xmath UCI)

MathScripts

Model Info

Browser and SuperBlock Editor
Interactive

User

Interactive
User

SuperBlock
Editor

Simulator,
Linearizer,
etcetera

Model

Result

Changes
to Model

User-authored
MathScripts

Chapter 7 SystemBuild Access

© National Instruments Corporation 7-3 SystemBuild User Guide

SBA Syntax
This section describes SBA syntax and other conventions and notation used
in this chapter. SBA syntax is exactly the same as Xmath command and
function syntax (refer to the Xmath User Guide). The basic syntax, and the
behavior of inputs, keywords, and outputs is the same.

Command Syntax
Xmath commands process inputs to perform operations, evaluate
expressions, access intrinsic (or user-supplied) utilities and facilities,
and more. By definition, commands do not return results as Xmath values.
In SBA, commands are used to create, copy, delete, or modify SystemBuild
objects in the SuperBlock Editor. The syntax is as follows:

Command arg1, arg2, ... argn, {kwd=parameter_value}

A SystemBuild object is described by the values of its parameters, which
closely correspond to all enabled fields in the relevant SystemBuild dialog.
A created object is instantiated in the SuperBlock Editor.

Function Syntax
Xmath functions operate on a list of input parameters without modifying
them. SBA uses functions to query Xmath objects. They have the following
syntax:

[v1=kwd,..., vN=kwd] = function(in1,in2,{kwd=parameter_value})

The results of query function calls are returned to Xmath. Any parameter
that can be queried can be assigned to a variable. Because a SystemBuild
object may have dozens of parameters that you might want to query,
SBA functions take advantage of keyword output assignment. While this
capability is available in Xmath MSFs, it is not commonly used because
Xmath functions generally return few outputs. For an example, refer to the
Query section.

Chapter 7 SystemBuild Access

SystemBuild User Guide 7-4 ni.com

Inputs, Optional Inputs, and Keywords
Each command or function has one or more required inputs, possible
optional inputs, and keywords. These have the following properties for
both commands functions:

Basic SBA Tasks
This section shows some basic examples of SBA syntax. Any object you
can create and modify in the SuperBlock Editor can be reproduced with
SBA. This section shows SBA commands to create a simple model, which
is then referred to throughout the section.

Create
The following example creates a SuperBlock, blocks within the
SuperBlock, and connections between them.

createsuperblock "cmd_createconnection", {inputs=5, outputs=2}

createblock "sin", {id=1, inputs=3}

createblock "elementproduct", {id=2,inputs=2}

con0_1=[...

 1,3;

 2,2;

 3,1];

con1_2=[...

 2,1;

 3,2];

createconnection 0,1,con0_1

createconnection 1,2,con1_2

Inputs Inputs are required. These must be ordered as shown in
the syntax statement for each command or function. If a
command syntax does not appear to specify inputs, it is
because a default is assumed.

Optional
Inputs

An optional input appears after required inputs and before
keywords. If specified, the order is important.

Keywords Keywords always appear within curly braces {}. They are
optional, as each is assigned a default value which is used
if the keyword is not called. Keyword order is not
important unless it violates the logical rules of the editor.
Refer to the Using SBA section.

Chapter 7 SystemBuild Access

© National Instruments Corporation 7-5 SystemBuild User Guide

createconnection 1,0,[1,1]

createconnection 2,0,[1,2]

Query
You can query an existing block to determine what its settings are. You
also can query block options to determine the available keywords for a
particular block. You must identify a SuperBlock by its name, but you can
identify a primitive block by its name or its ID. Let’s see what the valid
options are for the ElementProduct block.

[optlist] = queryblockoptions("elementproduct");optlist?

optlist (a column vector of strings) =

BlockType

 Name

 Id

 Inputs

 Outputs

 States

 Comment

 Location

 Size

 Color

 Faces

 OutputLabel

 OutputName

 InputName

 InputPins

 OutputPins

 Labels

 IconType

 Border

 OutputUserType

 OutputDataType

 OutputRadix

 OutputMinimum

 OutputMaximum

 OutputAccuracy

 OutputUnit

 OutputComment

 OutputScope

 OutputAddress

 CustomHelp

 Container

Chapter 7 SystemBuild Access

SystemBuild User Guide 7-6 ni.com

 PropagateLabels

 CustomIcon

Given the available parameters, we can query an existing block for selected
values by using keyword output assignment.

[l=location,s=size,ip=inputpins]=queryblock(1); l? s? ip?

l (a row vector) = 180 0

s (a row vector) = 80 80

ip (a string) = Scalar

Modify
These commands modify the previously created model.

modifysuperblock "cmd_createconnection",

 {inputlabel=["U1";"U2";"U3"]}

modifyblock 1,{labels="on"}

Display
The SBADISPLAY command allows you to refresh the editor window after
changes and to control diagram size on the model level. Individual block
size is controlled by the size keyword definition for each block. We can
try this on the existing model:

SBADISPLAY, {fit}

SBADISPLAY, {normal}

SBADISPLAY, {refresh}

Delete
You can delete any of the elements created so far. For example,

deleteconnection 0,1

deleteblock 2

deleteSuperBlock "cmd_createconnection"

Sample Scripts
For examples of some sophisticated SBA scripts, refer to
SYSBLD/examples/export, where SYSBLD is the root SystemBuild
directory in your distribution. These unsupported SBA commands and
functions read all or part of an existing model and create an SBA script that
reproduces the model. Exportsuperblock.msc is able to do this for an

Chapter 7 SystemBuild Access

© National Instruments Corporation 7-7 SystemBuild User Guide

entire SuperBlock hierarchy. You can find other examples of SBA scripts
in SYSBLD/scripts. You can use any of the scripts as long as the
directory is in your path. Alternatively, you can copy them locally and
modify them to suit your purposes.

Using SBA
This section provides a variety of tips that will help you get the results you
want when using SBA.

Keyword Ordering
In general, you can specify Xmath keywords in any order because they
have defaults. However, SBA does not always keep this rule because
Xmath cannot fully mimic the behavior of the editor. For example, when
working interactively it often does not matter which fields you define first
as long as the inputs are found to be compatible when you click OK. If
inputs are compatible, the editor provides defaults, even for fields you did
not edit. For example, if you specify three outputs, the editor automatically
gives you the opportunity to specify three output names, three output
labels, and so forth.

When in doubt, look at the block dialog. If you plan to define any of the
values shown above the tabs, define them first and in the order shown from
left to right. Define inputs on the Parameter tab later. Let’s apply this
principle to the block dialog box in Figure 7-3.

Chapter 7 SystemBuild Access

SystemBuild User Guide 7-8 ni.com

Figure 7-3. StateSpace Block Dialog

The name and ID are optional, so it does not matter when you define them.
Of the remaining items, define inputs, outputs, and states in that order.
The dimension of the system matrix is determined from these values.

Block Parameters
Many blocks have parameter dependencies, or special parameters. The
queryblockoptions() function returns all parameters specific to the
queried block. However, it is possible for legal parameters to be mutually
exclusive. To be sure that you are properly using block parameters, consult
the MATRIXx Help for the specific block before creating your script.

Error Handling
Xmath interprets SBA inputs literally. An error may result if there
are dependencies between fields and the parameters are undefined or
incompatibly defined. In some cases, however, Xmath passes a call to
the editor. If the call does not make sense, the editor attempts to create
compatible settings. This behavior is consistent with the editor interactive

Chapter 7 SystemBuild Access

© National Instruments Corporation 7-9 SystemBuild User Guide

behavior, but it makes script debugging difficult because no error messages
are returned to Xmath when SystemBuild encounters the improper values.
For example, the following is legal command that creates a block in
SystemBuild. Unfortunately you might not get what you expect:

legal (but undesirable) syntax:

createblock "gain",{outputlabel=["A","B","C"], outputs=3}

Regardless of the fact that you have specified three labels, this command
generates a block that has one output and one output label. When the
command is interpreted, outputlabel is encountered first. Therefore, the
default number of outputs (1) is assumed and one outputlabel is
created. The final output definition is ignored because a value has already
been assumed. As stated in the Keyword Ordering section, you should
always define inputs and outputs first.

Input Formats
The MATRIXx Help details all SBA commands and functions. In the Xmath
command area, type help SBA to display a list of links to SBA commands
and functions. Look at different SBA commands. You can see that the input
format (integer, matrix of strings, and so forth) is specified for each
parameter.

Typical Input Formats
The following table shows samples of possible input formats.

Table 7-1. Possible Input Formats

Format Comment or Example

Float Argument requires a single float value.

Float, Vector, or
Matrix

Argument requires a matrix of floats. Size and matrix orientation is command
dependent.

modifyblock "test",{outputaccuracy=[.01,.001,.0001]}

Integer Argument requires a single integer value.

queryblock(98)

Integer Matrix Argument requires a matrix of integers. Size and matrix orientation is
command dependent.

createconnection 2,0,[1,2]

Chapter 7 SystemBuild Access

SystemBuild User Guide 7-10 ni.com

Multiple Input/Output Specification
A number of SystemBuild objects have multiple input and/or multiple
output (MIMO) capabilities. In these cases, certain parameters are
constrained to have dimensions proportional to either the number of inputs,
outputs, or both. You can specify these inputs as an array of values, or you
can specify each value separately by appending the index value to the
keyword.

For example, use an array of strings to define the output names.

createblock "gain", {id=13,inputs=3,

 outputs=3,outputname=["gain_A","gain_B","gain_C"]}

To change one name after the fact, append the index number to the
keyword:

modifyblock 13, {outputname2="changed_gain_B"}

SuperBlock Editor Coordinate System
As shown in Figure 7-4, the SuperBlock Editor coordinate system occupies
the fourth quadrant of the coordinate plane. In this quadrant, X values are
positive and Y values are negative. A full-sized editor window thus lies
between (0, 0) and (1200, –900). By default, all blocks except containers
are 80 × 80. Containers are 100 × 100.

String The string length may be context sensitive.

createblock "timedelay", {name="td"}
modifyblock "td",{id=2}

Matrix or Vector
of Strings

The number of strings and the matrix orientation are
context sensitive.

modifyblock 99,{outputcomment=["com1","com2","com3"]}

Boolean Indicates the keyword is a simple yes/no or on/off parameter. In these cases,
the presence/absence of the keyword defines the value.

Table 7-1. Possible Input Formats (Continued)

Format Comment or Example

Chapter 7 SystemBuild Access

© National Instruments Corporation 7-11 SystemBuild User Guide

Figure 7-4. SystemBuild Coordinate System

When SBA places new blocks in an empty diagram, the default location of
the first block 1 is (180, 0). If no ID is specified, the default ID is 1. If the
default is assumed for subsequent blocks they are placed from left to right
and numbered sequentially. If the number of blocks is greater than 10,
block 11 starts a new row at (180, –180). You can position blocks in the
diagram by specifying a block ID. For example, assigning a block ID of
14 places a block at (720, –180) as long as that position is unoccupied.

You should not specify a Y value greater than 0. Although SystemBuild
places your block according to your direction, unpredictable numbering
can result.

-100

-200

-300

-400

-500

-600

-700

-800

-900

0
1 2

11

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Chapter 7 SystemBuild Access

SystemBuild User Guide 7-12 ni.com

Tutorial
As discussed in previous sections, SBA allows you to write MathScript
files that contain commands to build, modify, and query a SystemBuild
model. Also, Xmath allows you to execute commands that simulate,
linearize, and perform other operations on models. These two types of
operations can be combined in a MathScript to build and execute models.

Building the Predator-Prey Model
Example 7-1 is a model from the field of population demographics,
illustrating the interaction of predator and a prey species in a competitive
environment. You can copy it from
SYSBLD/examples/pred_prey/predprey.ms.

Example 7-1 Commands to Build the Predator Prey Model

Create predator prey model using SBA

#

#

Build window must be opened first

build

#

Create the top level SuperBlock

createsuperblock "predator_prey", {inputs=1,outputs=2,type="continuous"}

#

Create the prey integration loop

createblock "integrator",

{name="x_prey",id=1,location=[100,0],initialstates=1}

createblock "gain", {name="c_times_xprey",gain=1,id=2,location=[300,0]}

createblock "summer", {name="xdot_prey",id=3,location=[500,0]}

#

Connect the prey integration loop

createconnection 1,2

createconnection 2,3, [1,1]

createconnection 3,1

#

Create the predator integration loop

createblock "integrator", {name="x_pred",id=4,

location=[100,-300],initialstates=1}

createblock "elementproduct", {name="a_xpred",id=5,

location=[300,-300]}

createblock "summer", {name="xdot_pred",id=6,

Chapter 7 SystemBuild Access

© National Instruments Corporation 7-13 SystemBuild User Guide

location=[700,-300],icontype="special"}

#

Connect the predator integration loop

createconnection 4,5, [1,1]

createconnection 5,6, [1,2]

createconnection 6,4

#

Create the blocks for the interaction between predator and prey

createblock "gain",

{name="b_times_xprey",gain=2,id=7,location=[250,-150]}

createblock "elementproduct",

{name="b_xpred_xprey",id=8,location=[400,-150]}

createblock "gain", {name="k",gain=.5,id=9,location=[600,-150]}

#

make the connections between the two loops

createconnection 1,7

createconnection 7,8, [1,1]

createconnection 4,8, [1,2]

createconnection 8,9

createconnection 8,3, [1,2]

createconnection 9,6, [1,1]

#

Make the external connections

createconnection 0,5, [1,2]

createconnection 1,0, [1,1]

createconnection 4,0, [1,2]

Notice that the most natural way of operating within the SuperBlock Editor
may differ sometimes from the obvious way of doing things in SBA. When
working interactively, you typically create a few blocks and then perhaps
duplicate blocks in order to build the model quickly and efficiently. You
might connect a few blocks, create additional blocks putting in the external
inputs and outputs as you go, and connecting things whenever it seems
convenient. By contrast, in this MathScript we first create a loop and then
form the connections. We then create the second loop and form its
connections. We create the blocks that work between the two loops, and
then connect them. Finally, we add the external inputs and outputs. You can
organize your script as you see fit.

Chapter 7 SystemBuild Access

SystemBuild User Guide 7-14 ni.com

Simulating the Predator-Prey Model
This MathScript file is available on your system as SYSBLD/examples/
pred_prey/predprey_driver.ms, which in turn calls (executes) the
previous file, SYSBLD/examples/pred_prey/predprey.ms. In
Example 7-2, we create the time and input data vectors, run the simulation,
and plot the output.

Example 7-2 Creating the Data Vectors, Running the Simulation, and Plotting the Output

Create the model

execute file = "predprey.ms"

Create the t and u input vectors

t = [0:.1:20]';

u = ones(t);

#

Run the simulation

y = sim("predator_prey",t,u);

plot the results

plot(t,y)?

#

modify the model

modifyblock 9, {gain=.2}

rerun the simulation

y2 = sim("predator_prey",t,u);

#

plot outputs from both simulation runs

plot(t,[y,y2],{linecolor=["black","black","red","red"],linestyle=[1,2,1,2]})?

save the output data

save t y "predprey.out" {matrixx,ascii}

© National Instruments Corporation 8-1 SystemBuild User Guide

8
Simulator Basics

After you have built a model in the SystemBuild Editor you are almost
ready to analyze and simulate your system using the SystemBuild
simulator. Prior to the simulation itself, you need to set up parameters
and might want to perform an analysis prior to the simulation. During
the simulation, you can perform experiments by varying the values of
variables.

This chapter explains how to use the simulator and customize your
simulations with simulation keywords. The major topics are as follows:

• Dividing Your Model into Subsystems

• Scheduling Subsystems

• Setting Options and Parameters for Your Model

• Analyzing Your Model Prior to Simulation

• Some Additional Tools

• Simulating Your Model

• Terminating Your Simulation

• Simulation Errors

We also discuss the following related functions: analyze(),
creatertf(), and simout().

Dividing Your Model into Subsystems
By default, subsystems are determined internally by SystemBuild and
require no intervention by the user. However, you might want to make
some changes to SystemBuild natural divisions. This topic helps you to
understand how SystemBuild creates subsystems and then tells you why
and how to make changes.

Chapter 8 Simulator Basics

SystemBuild User Guide 8-2 ni.com

How SystemBuild Divides Your Model Into Subsystems
Subsystems are groupings of one or more SuperBlocks that fall into one of
the five following categories:

• Continuous—Integrated over each time interval in the simulation.

• Free-Running Periodic—Executed repetitively at a fixed frequency.

• Enabled Periodic—Executed repetitively, but only while its enabling
signal remains active.

• Triggered—Executed when its trigger is detected.

• Procedure—Executed when its parent SuperBlock is active.

An understanding of how subsystems function is helpful in the
interpretation of simulation results.1

Example 8-1 shows how a hybrid (continuous and discrete) model is
divided into subsystems.

Example 8-1 Dividing a Model into Subsystems

Consider a model for the following SuperBlocks:

• Two continuous SuperBlocks

• A discrete SuperBlock at a sample rate of 0.1

• Two discrete SuperBlocks with a rate of 0.05

The subsystems making up this model include the following:

• One continuous subsystem (made up of two SuperBlocks)

• A free-running periodic subsystem (made up of one SuperBlock)
sampled at 0.1

• Another free-running periodic subsystem (made up of two
SuperBlocks) sampled at 0.05.

Each of these subsystems then accept inputs and post outputs under the
control of the scheduler at scheduler-specified times.

1 When you generate code, AutoCode also uses subsystems in the same way, although the timing might be different (refer to
the AutoCode User Guide).

Chapter 8 Simulator Basics

© National Instruments Corporation 8-3 SystemBuild User Guide

Assigning SuperBlocks to Additional Subsystems
Consider the model described in Example 8-1, but increase the number of
SuperBlocks with a sample rate of 0.05 to 200. By default, SystemBuild
assigns all 200 SuperBlocks to the same subsystem.

As the number of SuperBlocks assigned to a single subsystem increases,
problems may occur in compiling the generated code. The code for the
subsystem may become too large for certain compilers to deal with.

Also, in multiprocessor applications it might be desirable to break up
the generated subsystem code and divide its execution among several
processors.

SystemBuild provides a solution for these problems. You can assign
discrete and trigger SuperBlocks to subsystems using the processor Group
ID field located on the Attributes tab of the SuperBlock Properties dialog.
For this field to be used, the SuperBlocks in the subsystem that is to be
divided must have identical timing attributes and the same processor group
ID value. SuperBlocks with the same timing attributes but different group
ID values are assigned to different subsystems.

Using this field, it is possible to divide a set of SuperBlocks with identical
timing characteristics into different subsystems. Using our example, the
model might be anywhere from one subsystem (all SuperBlocks assigned
the same ID) to 200 subsystems (each SuperBlock assigned a unique ID)
sampled at 0.05 seconds, depending on settings for the processor Group ID
fields.

Scheduling Subsystems
Different scheduler programs are used for simulation and for the execution
of generated code. The generated code scheduler is optimized for real-time
operations, whereas the simulation scheduler is optimized for performance
in simulation. The simulator scheduler controls the overall flow of data
between subsystems, scheduling of the subsystems and posting their
outputs. If you want the simulator scheduler to match the code scheduling
of discrete models, you can use the actiming (AutoCode timing)
keyword.

The simulation scheduler uses the computational attributes of the
subsystems to establish the execution priority. The computational attributes
include the type of subsystem and, for discrete subsystems, the sample rate.
Refer to the Scheduling Discrete Subsystems section.

Chapter 8 Simulator Basics

SystemBuild User Guide 8-4 ni.com

Whenever a system with one or more discrete subsystems is analyzed for
simulation or any other purpose, a scheduler cycle or minor cycle must be
calculated so that each subsystem can be scheduled at the proper time. The
minor cycle is defined as the smallest sample rate of all the subsystems in
a model. If the shortest interval does not divide evenly into all the sample
intervals, or if there is a timing skew, a faster “pseudo-rate” is derived from
the floating point greatest common divisor (FGCD) of the sample intervals,
including any trigger subsystem timing requirements. A minor cycle time
is the largest floating point value that can divide each member of the set of
time intervals that must be serviced into an integral number of times.

Refer to Figure 8-1 for an illustration of these ideas. Subsystem 1 runs at a
time interval of 0.2 units, but Subsystem 2 runs at an interval of 0.3, so that
no direct divisor of the intervals is available. The pseudo-rate of 0.1 is
generated.

Figure 8-1. Derivation of a Pseudo-Rate

Scheduling Continuous Subsystems
For subsystem scheduling, the simulation time-line is segmented according
to user time points and discrete events. The continuous subsystem,
however, can be thought of as running at all times throughout the
simulation and is not scheduled at discrete times. This subsystem rather is
integrated continuously over each time interval in a piece-wise fashion.

Scheduling Discrete Subsystems
For discrete subsystems, the scheduling is based on the principle of
rate-monotonic scheduling, deriving priorities for execution from the
rate of periodic subsystems and the timing requirement for triggered
subsystems. The algorithm assigns higher priority to the faster
subsystems and lower priority to slower ones.

Subsystem 1
Interval = 0.2

Subsystem 2
Interval = 0.3

Pseudo-Rate
minor cycle = 0.1

0 .2 .4 .6 .8 1.0

Chapter 8 Simulator Basics

© National Instruments Corporation 8-5 SystemBuild User Guide

Subsystem priorities are used to determine the order in which
subsystems that are executed at the same time point are executed, as
well as determining which values get written to DataStores if multiple
subsystems attempt to write to one DataStore at the same time. Refer to
the DataStores section of Chapter 2, Catalog Browser, for more
information.

• Higher priorities go to faster subsystems. Faster is defined as higher
sampling rate (discrete free-running) or quicker timing requirement
(trigger).

• If two discrete free-running subsystems have the same rate and the
same skew, the one with lowest subsystem ID has priority.

• If a discrete free-running and a trigger subsystem have the same rate,
the free-running subsystem has priority.

• If trigger subsystems have priority, the order of priority is
asynchronous, as soon as finished, at timing requirement, and at
next trigger. Refer to the Triggered Subsystems section.

The priorities among the discrete subsystems are shown in the following
table.

Properties of Discrete Scheduled Subsystems
The scheduling of execution is permanently set for each type of subsystem,
but you can modify the posting of outputs with certain keywords.

• Posting of outputs for free-running and enabled periodic subsystems.

– Modify with the global cdelay (computational delay) keyword.
When cdelay is set, the output of discrete subsystems is delayed
one minor cycle.

– Otherwise, the posting of the output occurs immediately following
the subsystem execution.

Priority Subsystem

1 Free-running Periodic

2 Enabled Periodic

3 Triggered Asynchronous (ASYNC)

4 Triggered As Soon As Finished (SAF)

5 Triggered At Timing Requirement (ATR)

6 Triggered At Next Trigger (ANT)

Chapter 8 Simulator Basics

SystemBuild User Guide 8-6 ni.com

• Posting of outputs for triggered subsystems is controlled on a
SuperBlock-by-SuperBlock basis. A description of each of these
posting options is given in the Triggered Subsystems section.

Free-running Periodic Subsystems
A free-running subsystem is always enabled and gets executed when its
sample time arrives.

Enabled Periodic Subsystems
An enabled periodic subsystem runs when it is either enabled by its parent
SuperBlock or by an input signal. A SuperBlock enabled by its parent
executes at its sample interval as long as its parent is enabled. A
SuperBlock enabled by an input signal, on the other hand, is scheduled
to execute at its sample interval as long as the enable signal is TRUE.

Triggered Subsystems
There are four types of triggered subsystems that differ in the way they post
outputs:

At Next Trigger
(ANT)

The subsystem only posts its outputs when it is next
triggered for execution. ANT is used for modeling
certain kinds of variable-rate but repetitive activities,
such as a shaft that rotates at a variable speed.

At Timing
Requirement
(ATR)

The timing requirement is specified in the
SuperBlock dialog. Outputs are posted that number
of cycles after the subsystem is triggered for
execution. This type of posting is a way of placing
a priority on the subsystem’s output availability.

As Soon As
Finished (SAF)

The outputs are posted at the beginning of the minor
cycle after the subsystem finishes running. This type
of posting sets the subsystem output availability at the
highest priority.

Asynchronous
(ASYNC)

The outputs are posted immediately (asynchronous to
the scheduler) if the triggering signal is a state event.
Refer to the State Events section of Chapter 13,
Advanced Simulation. If the triggering signal is not a
state event, the outputs are posted at the beginning of
the minor cycle after the subsystem finishes running
(identical to SAF).

Chapter 8 Simulator Basics

© National Instruments Corporation 8-7 SystemBuild User Guide

This may impact the operations of an SAF trigger subsystem with a
user-specified timing requirement that is created into a subsystem that is
otherwise purely continuous. In this case, the scheduler minor cycle will be
equal to the timing requirement, which may mean that the posting of the
outputs of the SAF subsystem are unexpectedly delayed.

Matching the Timing of AutoCode for Discrete
Systems
The SystemBuild simulator provides the actiming keyword in order to
match AutoCode results for discrete systems. The simulator accomplishes
this by matching AutoCode scheduler cycle, system initialization, and
execution and posting times for each subsystem.

Two simulation keyword values are forced so that the initialization and
posting of outputs match AutoCode.

Setting Options and Parameters for Your Model
In this section, we continue the discussion of scheduling with a discussion
of time lines and how to set them up, tell you how to parameterize your
variables so that you can change their values for repeated simulations,
and provide some assistance in selecting an integration algorithm for your
model. Refer to the Changing Parameters for Repeated Simulations section
and Selecting an Integration Algorithm section for more information.

Keyword
and Value Description

cdelay = 1 The output posting is always delayed one minor
cycle.

initmode = 0 This keyword setting disables the initialization that is
normally performed at simulation time.

Chapter 8 Simulator Basics

SystemBuild User Guide 8-8 ni.com

Simulation Time Lines, Inputs, and Outputs

Input Time Line
The input time line is formed from the time vector entered through the Time
Vector/Variable field on the Parameters tab of the SystemBuild Simulation
Parameters dialog box or as an input to the sim function. Consequently, the
time vector value must be a monotonically increasing column vector. The
simulator uses the time vector as follows:

• The largest (and last) value in this vector is used as the simulation stop
time. Changing the largest value in the input time line changes the
duration of the simulation.

• Time vector time points are synchronized with input data points. Refer
to the Computing External Input Values section.

• In continuous and hybrid systems that use variable-step integration
algorithms, you are guaranteed that the integration algorithm will
converge on each of these time points.

Note There might be other time points for which the algorithm converges.

• Outputs from the simulation are saved for each point of the input time
line—that is, each point of the input time line is also a point on the
output time line. Refer to the Input Time Line section.

Internal Time Line
The simulator calculates an internal time line based on the model and the
integration algorithm selected. The values in the internal time line are not
known prior to the simulation.

Computing External Input Values
For every external input, a data point must be supplied for each time point
of the input time line. The input data must have the dimension:

(Number of input time points) × (Number of external inputs)

In the SystemBuild Simulation Properties dialog, you enter this data in the
Input Data/Variable field. For the sim() function, the input variable
(traditionally named u) is paired with the time vector (referred to as t).
The sim() function allows you to specify a PDM. You cannot do this
interactively. The PDM domain is extracted for the time vector, and the
range is used for input values.

Chapter 8 Simulator Basics

© National Instruments Corporation 8-9 SystemBuild User Guide

Whenever the simulation requires external inputs, it first compares the
current simulation time (from the internal time line) versus. the input time
line. If the current simulation time matches one of the input time points, the
simulation reads the value of the external inputs directly from the input
matrix.

If the current simulation time falls between two time points on the input
time line, the simulator performs a linear interpolation using the known
data points and assigns the resulting value to the time point (on an
input-by-input basis).

Output Time Line
The simulator saves the values of external outputs at various times during
the course of the simulation. The collection of time points for which the
external output values are saved is referred to as the output time line.
By default the output time line includes the input time line.

The output time line is computed as follows:

• Every time point on the Input Time Line is also on the output time line.

• If you specify a reporting period for sim() with the dtout keyword,
every integral multiple of this value is a time point on the output time
line.

• If you specify extending the output calculations for sim() with the
keyword extend, every discrete subsystem transition time point and
every discrete event time point is added to the output time line.

Changing Parameters for Repeated Simulations
It is often useful to study the effects of changing one or more parameters in
a system and running repeated simulations. In selected fields in each block
parameter dialog, you can specify an Xmath variable name to be used in
place of the block’s field data. Simply enter the variable name in the
%Variable field of the block form. You can enter the variable name
with a partition specified (partition.variable_name) or without
(variable_name). If you specify a partition name, SystemBuild looks
there to resolve variable names rather than in the default partition.

You may assign a default value to the variable. You can automatically copy
the variable with its default value into the Xmath workspace. When you
have typed the default value and the variable name, after you press <Enter>
or <Return> on the keyboard, you can type <Ctrl-p>. This copies the
variable name and value into the Xmath workspace and registers the fact
that it is a %Variable that you can change at simulation time. By contrast,

Chapter 8 Simulator Basics

SystemBuild User Guide 8-10 ni.com

you can set the default value in the block form to be the same as the Xmath
value of the variable by entering the variable name in the value field of the
block form and pressing <Enter> or <Return>.

The Simulation vars Keyword
The vars keyword provides control over whether you can change the value
of your model parameters using Xmath variables.

If you use the vars keyword, the simulator picks up %Variables specified
in the model and uses them for simulation. Since the default for the option
is on, parameter variables specified are always used unless you specify
otherwise. If you want the default block data, specify {vars=0} in the
sim() options keyword list.

The block uses its default value if its referenced Xmath variable does not
exist or if there is an error in the variable data. Variable errors include:

• Variable values are out of range

• Variable dimensions are incorrect

• Variable does not match the expected data type

• Variable not found in this scope

Parameter Variable Scoping
Parameter variable scoping uses the hierarchical nature of SystemBuild
SuperBlocks in conjunction with Xmath partitions to allow you to assign
separate parameter values to each of multiple instances of a SuperBlock
based on the partitions of the calling SuperBlocks.

As mentioned in the previous section, you may enter a parameter variable
in one of two ways, either with or without a partition specified. If you enter
a parameter variable with a partition, the variable under the specified
partition is used during simulation instead of a value from the working
partition. In this case there is no hierarchical scoping of the variable
because it is explicitly specified.

Rather than specify the partition on a block-by-block basis, you may enter
a partition name in the Xmath Partition field of the SuperBlock Block
dialog. The simulator then looks up the SuperBlock hierarchy for the
existence of a partition name. If a partition is specified, the simulator looks
for each block parameter variable under that partition. This is referred to as
parameter scoping—the variable is in the scope of the SuperBlock
reference’s partition.

Chapter 8 Simulator Basics

© National Instruments Corporation 8-11 SystemBuild User Guide

If no partition is specified in the SuperBlock Block dialog box for this
instance, the simulator continues its search for the next SuperBlock up the
hierarchy. If the search through the SuperBlocks is exhausted, the simulator
finally looks for the variable in your current working partition. Refer to
Example 8-2.

Example 8-2 Demonstrating Parameter Scoping

This example demonstrates the flexibility of parameter scoping. Refer to
Figure 8-2. In Xmath you are working in partition main and have created
three partitions X, Y, and M. You have also created the following variables
under each partition:

main.A0 = 1

X.A1 = 5

Y.A1 = 2

M.A1 = 3

Figure 8-2. Example of %Variable Scoping

The model has two SuperBlocks, Top and Bottom. The Top SuperBlock
contains two different SB references to SuperBlock Bottom. ref1 uses X
as its SB reference partition and ref2 uses Y as its SB reference partition.

Inside SuperBlock Bottom, there are three Gain blocks with parameter
variables, A0, A1, and M.A1. Since M.A1 is explicitly specified, no
hierarchical search is performed, and variable A1 under partition M is picked
up during simulation. Since M.A1 has been set to 3, this block has a gain
of 3. For the Gain block using variable A0, the simulator begins its search
up the hierarchy since no partition is specified in the block. When it looks

Chapter 8 Simulator Basics

SystemBuild User Guide 8-12 ni.com

in ref1, it cannot find variable A0 in the X partition. Likewise, when it
looks in ref2, it cannot find variable A0 in the Y partition. The last place
the simulator looks is in the partition main, your working partition. Finally,
the simulator locates A0 in partition main so the block picks up a gain of 1.

For the block with A1 specified, a gain of 5 is picked up under the X
partition for SuperBlock ref1 and a gain of 2 is picked up under the Y
partition for ref2.

Selecting an Integration Algorithm
Dynamic models created in SystemBuild can be broadly categorized as
follows:

• Continuous

• Discrete, including discrete free-running, enabled, triggered, and/or
procedure subsystems

• Hybrid (a combination of continuous and discrete subsystems)

Given the user-defined initial conditions and input vector, the problem of
simulating the SystemBuild model, or obtaining a sequence of solutions to
the system equations, is fairly straightforward for discrete systems. Starting
from the given initial conditions, the discrete state equations are iterated
until the specified final time.

Finding a numerical solution for continuous and hybrid systems, on the
other hand, requires a proper method of approximation. The purpose of
an integration algorithm, or differential equation solver, is to calculate an
accurate approximation to the exact solution of the differential equation.
Then the solution is “marched forward” from a starting time and a given set
of initial conditions.

Since all continuous system integration algorithms are inherently
approximations, there are a number of important points to consider in
selecting a proper method: computational efficiency, truncation and
round-off errors, accuracy and reliability of the solution, and stability of
the integration algorithm.

Chapter 8 Simulator Basics

© National Instruments Corporation 8-13 SystemBuild User Guide

Integration Algorithms
Table 8-1 lists the supported integration algorithms. The numbers
correspond to the selection indices used in Xmath and SystemBuild to
specify an algorithm:

1. Euler’s method

2. Second-order Runge-Kutta

3. Fourth-order Runge-Kutta

4. Fixed-step Kutta-Merson

5. Variable-step Kutta-Merson

6. Differential-algebraic stiff system solver (DASSL)

7. Variable-step Adams-Bashforth-Moulton

8. QuickSim

9. ODASSL

10. Gear’s method

The default integration algorithm is 5 (Variable-step Kutta-Merson).
You can set the algorithm globally using the command:

SETSBDEFAULT,{ialg=algnumber}

where algnumber is a member of the list above. You also can determine
the current default number using the command:

SHOWSBDEFAULT

You can set the integration algorithm for a given simulation on the
Parameters tab of the SystemBuild Simulation Parameters dialog, or
you can set the ialg keyword in the sim() function call:

y = sim("model",t,u,{ialg = algnumber})

Integration Algorithm Recommendations
Table 8-1 lists recommendations for choosing an integration algorithm.
Notice that a great variety of systems fall into more than one category listed
in the table. In choosing an algorithm, therefore, it is advisable to try more
than one method for those systems that belong to more than one class.
These topics are covered in detail in Chapter 13, Advanced Simulation.

When algebraic loops are present in a model, all methods other than the stiff
system solvers, DASSL and ODASSL, introduce a delay into the system
even though they might integrate the equations successfully.

Chapter 8 Simulator Basics

SystemBuild User Guide 8-14 ni.com

Analyzing Your Model Prior to Simulation
In this section, we provide you some insights into Working with Algebraic
Loops and Using the analyze() Function to debug your model prior to
simulation. If you want to save your model for simulation or creating code,
refer to the Saving Your Model with the CREATERTF Command section.

Table 8-1. Selecting an Integration Algorithm

Problem Type Euler RK2 RK4
FK
M

VK
M

DASSL,
ODAS,

GEAR ABM QuickSim

Linear, non-stiff + + ++ ++ +++ + +++

Linear, stiff + +++ + +++

Nonlinear with continuous
derivatives

+ + ++ + +++
fastest

Nonlinear with
discontinuous derivatives

+ + + + +++
**

+
*

Nonlinear, stiff + +++ +

Systems with algebraic
loops

+++

Hybrid + +++ + +

Cont. with switch +++

Systems with UCBs ++ +++ ++

Differential Algebraic
systems

+++

ODAEs +++
(ODAS,
GEAR)

Key:
+ Marginally suitable.
++ Very suitable.
+++ Best for this problem type.
* Only with state events modeling the discontinuities.
** Recommended with state events/appropriate dtmin option.

Chapter 8 Simulator Basics

© National Instruments Corporation 8-15 SystemBuild User Guide

Working with Algebraic Loops
An algebraic loop occurs in a block diagram when an input to a block
depends on one of the outputs of the block from the current cycle. This
is illustrated in Figure 8-3, where the input to the gain of the 2 block is
dependent on its output. This results in a situation where the simulator
cannot readily decide which block to evaluate first.

Figure 8-3. Algebraic Loops Computation Problem

There are several practical problems with the presence of algebraic loops.
For example, the function evaluation provided by most algebraic solvers
may not give a fine enough resolution for a solution to be reached, or a
signal may be needed for initialization of the loop before the signal is
generated. For most systems, the use of a default value for initial states
(zero, for example) is usually inappropriate.

A simple continuous-time example, Figure 8-3, illustrates some of these
problems. The system is entirely algebraic, consisting of a Summer and
two Gain blocks. The transfer function for this system is:

G1
1 G1 G2×+

Chapter 8 Simulator Basics

SystemBuild User Guide 8-16 ni.com

This is equal to 2/7. If we were to propagate the input several times around
the loop trying to obtain the solution, the process would prove to be
unstable:

C = 0 to start.

A = 1 + C = 1

B = 2 * A = 2

C = 3 * B = 6 (6 disagrees with 0, do another pass)

Pass No. 2:

A = 1 + C = 7

B = 2 * A = 14

C = 3 * B = 42 (42 disagrees with 6, do another pass)

The numbers just get bigger until the ---FIXUP OVERFLOW--- message
occurs. The starting and finishing values for C will never agree, and the
system runs away.

The solution to this particular example lies in selecting an integration
algorithm designed to solve algebraic loops: the implicit stiff system solver,
DASSL, or ODASSL, which works the same for over-determined systems.

Other problems with algebraic loops occur when the SystemBuild
simulator has difficulty deciding where in a loop to start its processing.
A UserCode block (UCB) is a block that accepts a number of inputs and
generates corresponding outputs (refer to Figure 8-4). On initialization,
however, the situation becomes more problematic. For example, if UCB_1
has no direct (or feedthrough) terms, then it might be necessary for the
system to evaluate the outputs of the UCB before it evaluates either
SuperBlock_1 or SuperBlock_2. If so, you probably need to furnish
initial states for the UCB.

On the other hand, if there are direct terms in the UCB, SuperBlock_1
might need to be executed first to supply the UCB inputs to process. If so,
SystemBuild may have difficulty determining which block to process first.
One way to help is to set as many initial states as possible in any system
with an algebraic loop to help the system condition its calculations on
startup.

Chapter 8 Simulator Basics

© National Instruments Corporation 8-17 SystemBuild User Guide

Figure 8-4. Algebraic Loops Initialization Problem

DASSL is the method of choice when a system has algebraic loops since an
operating point is computed for the loop instead of adding a delay. This
allows the true system model to be integrated and avoids any adverse
effects a delay might cause in the system. DASSL has a built-in method for
changing the error norm used for the computation of its local error test.
Refer to the Stiff System Solvers (DASSL and ODASSL) section of
Chapter 13, Advanced Simulation, for more on DASSL.

Connecting one of the outputs of a SIMO block to one of its inputs results
in an algebraic loop being detected.1 Refer to Figure 8-5 for an illustration
of this idea. The blocks at A in the figure are not the same as the blocks at
B because the simulator tries to execute both parts of the SIMO block
(serial number 1) at the same time and cannot. Using the default integration
algorithm in SystemBuild, a delay is inserted in the loop and the output of
the blocks at A lags the outputs at B by one cycle.

1 They have to be connected through other blocks because the SuperBlock Editor will not let a block output be connected to
one of its inputs. The algebraic loop condition will not occur if one of the blocks presents a computational delay.

Chapter 8 Simulator Basics

SystemBuild User Guide 8-18 ni.com

Figure 8-5. MIMO Blocks Example

Finally, if you wish to insert initial conditions for the algebraic loops
reported by SystemBuild (the ordering is indicated in the warning
message), you can use the option yimp0 in the sim(), simout(), and
lin() functions. When you do this, the operating point computation that
calculates the algebraic loop values uses the initial condition yimp0 as its
starting value. In order to skip this operating point computation, use the
option {initmode=4}. When the operating point computation is skipped,
it is the your responsibility to provide consistent values for yimp0.

Using the analyze() Function
The analyze() function lets you query the system SuperBlock
hierarchy, the system's parameter information, and any system errors.
This information is useful for documenting system characteristics, but,
more importantly, it is an essential tool for debugging your models before
simulation. The analyze() function returns a list with all the names and
numbers of inputs, outputs, and states of the system. It displays this list and
a map of the SuperBlock hierarchy.

The simulator automatically invokes the analyze() function on newly
edited models. It provides you with the analyze() outputs, system
errors, and the SuperBlock hierarchy but not the system parameter
information. If you wish to view your system’s parameter information,
you must explicitly execute the analyze() function from the Xmath
command area or from the SuperBlock Editor.

Chapter 8 Simulator Basics

© National Instruments Corporation 8-19 SystemBuild User Guide

Invoking analyze from the Xmath Command Area
The syntax for the analyze() function is as follows:

sbInfo = analyze("model",{keywords})
subsysInfo=analyze("model",{keywords,subsystem})

When the subsystem keyword is not present, analyze() returns an
Xmath list object containing the following information:

When you use the subsystem keyword, analyze() returns a list object
with the following information:

SBInfo(1) Number of inputs

SBInfo(2) Number of outputs

SBInfo(3) Number of implicit outputs

SBInfo(4) Number of states

SBInfo(5) Number of implicit states

SBInfo(6) Names of inputs

SBInfo(7) Names of outputs

SBInfo(8) Names of implicit outputs

SBInfo(9) Names of states

SBInfo(10) Names of implicit states

SBInfo(11) System attributes: continuous, discrete, hybrid, or
multirate

SBInfo(12) Rates of subsystems, ordered from slowest to fastest

subsysInfo(1) RateArray.The rate array lists the subsystem to
which the SuperBlock has been assigned. All
continuous SuperBlocks are given the value 0
and all DataStores are given the value –1.

subsysInfo(2) Parent Index. The parent index contains the index
for the name of the parent SuperBlock in the
SuperBlock name array (subsysInfo(4)).

Chapter 8 Simulator Basics

SystemBuild User Guide 8-20 ni.com

In Xmath, you can index into the list object to get specific information.
For example:

sbInfo(11)

ans (a string) = hybrid multirate

analyze() outputs are stored on the Xmath stack, and the following
information is shown in the Xmath Commands window message area by
default:

• The SuperBlock reference map, including:

– Subsystem number (continuous = 0, 1 = fastest discrete,
2 = second fastest discrete, and so forth)

– SuperBlock names

– Library number, if any

• Number of inputs

• Input names

• Number of states

• State names

• Number of outputs

• Output names

• Sampling rate status, including all rates for multirate and hybrid
systems

If you use the analyze() keyword silent, analyze() generates the
output list, but it does not display system inputs, outputs, states, and block
names.

The analyze() keywords delaybuf, vars, and typecheck are the
same as corresponding sim() keywords (refer to the MATRIXx Help).

The sbdefaults keywords also apply to analyze(). For instance, if
you want type checking to be on at all times, then you can set it by typing:

SETSBDEFAULT,{typecheck = 1}

subsysInfo(3) Block IDs.The block ID array contains the block
ID of the SuperBlock reference within the parent
SuperBlock.

subsysInfo(4) Names Array.The names array contains the name(s)
of every SuperBlock in the model.

Chapter 8 Simulator Basics

© National Instruments Corporation 8-21 SystemBuild User Guide

Invoking analyze from the SuperBlock Editor
To run analyze from the SuperBlock Editor, select Tools»Analyze.

The Analyze SuperBlock dialog box comes on view. For a complete
explanation of the analyze tool, open the dialog box and click Help.

Saving Your Model with the CREATERTF Command
The CREATERTF command creates a real-time file (RTF) for use by
AutoCode, DocumentIt, or other products. The RTF is an intermediate
form of the model file. It makes a file of the output of the analyze()
function.

The syntax of CREATERTF is as follows:

CREATERTF "model",{rtf, delaybuf, vars, typecheck}

where model is the name of a SuperBlock in the SystemBuild catalog. For
a full description of CREATERTF syntax, type help creatertf from the
Xmath command area.

Some Additional Tools
This section discusses several additional tools that you might find helpful:
the simout() function, and the commands to show and set SystemBuild
default values for keywords.

Chapter 8 Simulator Basics

SystemBuild User Guide 8-22 ni.com

Extracting Dynamic State Values with the simout() Function
simout() can extract the dynamic state values (x), rates (xd), outputs (y),
and continuous implicit outputs (yimp) from a SystemBuild simulation,
either at the initial time or at the end of a simulation. If any of the values
are extracted at the initial time, this represents the starting operating point
of the system, taking only the initial conditions into account. If values are
extracted after a simulation, they represent a snapshot of the system
operating point at the completion of the simulation.

To run simout() from the Xmath command prompt:

[x,xd,y,yimp] = simout("model", {keywords})

where model is the name of a top-level SuperBlock in the current catalog.

All simout() keywords are identical to their sim() keyword
counterparts. As with the analyze() function, the sbdefaults apply.
For a complete explanation of this function, type help simout from the
Xmath command area.

Keywords Specific to simout() for Initial Condition

u0 Real vector of initial inputs. The default is zero.

x0 Real vector of initial states. The default is the SystemBuild
catalog value.

xd0 Real vector of initial state derivatives in implicit UserCode
blocks. Notice that the meaning (and most likely the
dimension) of xd0 is different from xd in the output argument
list.

yimp0 Real vector of initial implicit outputs (algebraic loops).

Chapter 8 Simulator Basics

© National Instruments Corporation 8-23 SystemBuild User Guide

Outputs
You can request one, two, three, or four outputs. If you request multiple
outputs, they must appear in square brackets ([]).

If your model includes Padé states, they are appended to the x and xd
vectors. Thus, you cannot use x and xd directly in the next simulation.

For the impact of fixed-point arithmetic on simout, refer to the Simout
Function section of Chapter 15, Fixed-Point Arithmetic.

Showing and Setting Keyword Default Options
SystemBuild default values are provided for each keyword used by
sim() and related functions (lin(), simout(), and so forth). Any
option default is automatically overridden by specifying a new value in the
keyword list. A simulation invoked from the SystemBuild dialog box uses
the same default values as the corresponding function call. Selections made
in the SystemBuild Simulation Parameters dialog box override any default
value.

To see all current default values, type:

SHOWSBDEFAULT

You can use SETSBDEFAULT to alter the default value of any keyword. The
new value is in effect until you change it or exit SystemBuild. For example,

SETSBDEFAULT, {autosavefile="autosave.cat",autosavetime=330}

sets the selected keyword value as a default for your current Xmath session.
Notice that the comma after SETSBDEFAULT is required.

You can use a null string to reset a keyword that takes a string variable as
an argument. Refer to Example 8-3.

x The state vector.

xd The state derivative vector. For discrete subsystems, this is a
pseudo-rate obtained from the equation

xd = [x(k + 1) – x(k)] / tsamp

where tsamp is the sampling period of this discrete
subsystem, y = the output values vector, and yimp = algebraic
loop or implicit output values vector.

Chapter 8 Simulator Basics

SystemBuild User Guide 8-24 ni.com

Example 8-3 Reset a Keyword that Takes a String Argument

Enable minmax logging and set the default minmax dataset name to foo:

setsbdefault,{minmax = "foo"}

Disable minmax logging:

setsbdefault,{minmax = ""}

Simulating Your Model
You can access the SystemBuild simulator from:

• SuperBlock Editor

• Xmath command area

• Operating system command line

This variety affords flexibility in running, analyzing, and modifying your
models.

SuperBlock Editor Simulation Interface
To invoke the simulator from the SuperBlock Editor, select Tools»
Simulate.

The SystemBuild Simulation Parameters dialog box opens (refer to
Figure 8-6). In this dialog, you can enter the time and input variables for
your simulation, specify selected simulation keyword options (including
fixed-point arithmetic), and enter the output variable name. Click the Help
button in this dialog box for more information about how to select
simulation options.

Chapter 8 Simulator Basics

© National Instruments Corporation 8-25 SystemBuild User Guide

Figure 8-6. SystemBuild Simulation Parameters Dialog

This is the preferred way to invoke the simulator.

Xmath Command Area Simulation Interface
Using the sim() function in the Xmath command area allows you to
specify a model currently loaded in the SystemBuild catalog (the model
does not have to appear in a SystemBuild window), the inputs to that
model, and any simulation keyword options. You can incorporate the
sim() function in Xmath scripts, making it possible to set up an
environment, run multiple simulations, and analyze the results. This
interface is also well-suited for batch mode, where you can run many
simulations unsupervised.

When you invoke the simulator from Xmath, it remains memory-resident
so that additional simulations run much faster than the first.

Sim Function Syntax
The basic syntax of the sim() function is included here. If you have
questions about the syntax of the sim() function or its keywords, type
help sim in the Xmath command area.

Chapter 8 Simulator Basics

SystemBuild User Guide 8-26 ni.com

To invoke the simulator from the Xmath command line, use one of the
following formats:

yPDM = sim("model", t, u, {keywords})
[t, y] = sim("model", t, u, {keywords})

where model is a text string, which is the name of the top-level SuperBlock
in the SuperBlock Editor.

For the yPDM form of the sim() function, the domain of the output
parameter-dependent matrix, yPDM, is the time vector, t. For example:

y1 = sim("MySystem", t, u)

The above call simulates a model named MySystem. It returns the result as
the PDM named y1. The following call returns the output column matrix y
and the sim() time column vector t.

[t,y] = sim("MySystem",t,u)

sim() keywords, like keywords in MathScript functions, are enclosed in
braces and separated by commas. When a keyword is assigned a string
value, the string must be enclosed in quotes. Refer to the MATRIXx Help
for a complete description of all keywords.

t is the required time vector, which must be strictly increasing and typically
starts with zero. It is conventional, but not necessary, to name the time
vector t. It can have any valid Xmath variable name (alphanumeric plus
underscore; no more than 32 characters; first character not numeric). For
example,

t = [0:0.1:10]';

creates a column vector of 101 values, starting with 0 and increasing in
increments of 0.1 to 10. The square brackets are required. The apostrophe
(’) transposes the matrix (vector in this case), and the semicolon suppresses
echoing the 101 values to the screen.

u is an input data matrix (required if the model has external inputs and
ignored if t is a PDM). Both t and u must be of the same row dimension.
The column dimension of u must match the number of external inputs of
the model. It is conventional, but not necessary, to name the input vector u.
It can have any valid Xmath variable name (must be alphanumeric, alpha
character first, no more than 32 characters).

The following call creates a vector of the same dimension and orientation
as t, consisting of all ones, and assigns it the variable name u:

u = ones(t);

Chapter 8 Simulator Basics

© National Instruments Corporation 8-27 SystemBuild User Guide

You can use existing t and u variables in the simulation dialog.

Given a SuperBlock with three inputs, the following lines create an input
compatible with the output dimensions:

t = [0:0.1:10]';

u = [t,t,t];

y1 = sim("model",t,u'); # Time and input row dimensions don’t match
y2 = sim("model",t,u); # Works

Background Simulation
The bg keyword causes a simulation to run in the background, freeing
Xmath for other work. This feature allows multiple simulations to run
simultaneously. You can monitor the progress of a simulation by watching
the status of its output variable on the Xmath stack. Therefore, if you wish
to run multiple simulations, you must be sure that the output variable names
are unique. For example, if you issue three simulation commands and the
output variable is y for each one, the ones that finish first are overwritten.

The familiar Xmath WHO command displays the variables in the current
partition. If the variable is stable, its dimension is shown. If it is still being
calculated—that is, if the simulation is still running—the variable is
followed by busy and the job number of the related simulation process.
Refer to Example 8-4.

Example 8-4 Using who

Type who to list Xmath variables. If a simulation output variable is followed
by busy, the simulation is still running. If your machine is fast, you may
need to specify a lengthy time vector in order to observe this.

who

main:

 t -- 10001x1

 u -- 10001x2

 y1 -- busy (job #1261)

 y2 -- busy (job #1262)

 y3 -- busy (job #1263)

To stop a particular job, type stop job = job_number (refer to
Example 8-5).

Chapter 8 Simulator Basics

SystemBuild User Guide 8-28 ni.com

Example 8-5 Using stop job

stop job = 1262

Sim is stopped.

Operating System Command Line Simulation Interface
Simulation from the operating system (OS) command line, like the
Xmath command line interface, accepts the SystemBuild model, its
inputs, and any simulation options as arguments. There is a direct
one-to-one correspondence between the keywords of the Xmath sim()
function and OS command line options. Additionally, you must specify
the SystemBuild model file that contains your system.

Simulating from the OS command line gives you the benefit of working
with OS command scripting languages such as C shell or PERL. This gives
you added power to pipe files to other processes, redirect output to files, run
automated simulations, and more.

The syntax for the sbsim executable is as follows:

sbsim -[option] [argument] top modelFile

The input file must be in MATRIXx saved format (whether it be binary or
ASCII) and contain a time vector t, and if external inputs are required,
an input data matrix, u. The default format for the output file is MATRIXx
binary.

You can see how to use the command in Example 8-6.

Example 8-6 Using sbsim

To simulate a model called MySys located in the model file mysys.dat
and to supply inputs t and u from the input file mysys.in and output the
results in mysys.out, the command for invoking this simulation is as
follows:

sbsim -i mysys.in -o mysys.out MySys mysys.dat

To output your data in ASCII format, invoke the simulation as follows:

sbsim -i mysys.in -o mysys.out -fsave 1 MySys mysys.dat

To avoid retyping your options each time you invoke the simulator, you can
use the -opt keyword, which takes as an argument a file that lists all the
options for a particular simulation. The sbsim syntax for this option is:

sbsim -opt optionFile top modelFile

Chapter 8 Simulator Basics

© National Instruments Corporation 8-29 SystemBuild User Guide

In the option file, each option and its argument must be listed on a separate
line. Following is a sample options file that specifies the input and output
files, the output file format, and the QuickSim integration algorithm.

-i mysystem.in

-o mysystem.out

-fsave 1

-ialg 8

If an option is listed twice, as in the following example, only the last option
encountered is used by the simulator:

-i mysystem.in

-o mysystem.out

-fsave 1

-i myothersystem.in

-ialg 8

The input file myothersystem.in would be used in this case.

If you need assistance with the command’s syntax or available options
while working with the simulator, you can get help from the OS command
line:

sbsim -help

Help for sbsim is only available from the OS.

Terminating Your Simulation
The simulator normally terminates automatically at the end of a simulation.
Simulation termination conditions include:

• End of the simulation input time line

• Simulation error (divide by zero, square root of negative number, and
so forth)

• Error reported by UserCode block

• Stop block encountered with input signal greater than zero

For interactive simulation (ISIM) (refer to Chapter 9, Interactive
Simulation), each of these conditions terminates the current simulation.
However, you can restart the simulation in the graphical environment.
Selecting File»Exit terminates ISIM.

In addition to the previous method, you can decide to abort a simulation at
any time by pressing (Windows) <Ctrl-Break> or (UNIX) <Ctrl-C> with your

Chapter 8 Simulator Basics

SystemBuild User Guide 8-30 ni.com

cursor in the Xmath command area as long as the simulator is running in
foreground mode (the bg keyword is not being used). These key
combinations immediately terminate the currently executing simulator.
However, saved output data may be lost, and the termination section of
UserCode blocks is not invoked.

Note If for some reason you have an active simexe() process that does not close
properly, you can use undefine simexe to terminate it.

Simulation Errors
There are several categories of simulation errors, including those trapped
by the hardware or operating system, the SystemBuild analyzer, or the
simulator. The following errors are trapped and posted by the simulation
software. The type of block may be indicated.

Simulation Software Errors
sim_ERROR: Division by 0.0 produces infinity.

If the second input vector to a divide block contains a zero value, then this
simulation error occurs.

sim_ERROR: Raise 0.0 to a nonpositive power.

A simulation error occurs when the input to an exponential block is zero
and the constant power is less than or equal to zero.

sim_ERROR: Both arguments to ATAN2 are zero.

The output of the arctangent function is undefined when both inputs are
zero.

sim_ERROR: ASIN or ACOS argument out of range.

The input to the Asin or Acos block must be in the range –1 to +1. The
output of this function is in the range 0 to π.

sim_ERROR: Natural log of zero or negative number.

A simulation error occurs if any input to the log block is less than or equal
to zero.

sim_ERROR: Square root of negative number.

A simulation error occurs if any input to the square root block is negative.

sim_ERROR: Raise negative number to noninteger.

Chapter 8 Simulator Basics

© National Instruments Corporation 8-31 SystemBuild User Guide

A simulation error occurs when the input to an exponential block represents
a floating point power and the constant is less than zero.

sim_ERROR: Overflow in y = EXP(u) function.

Quantity out of range of hardware.

Hardware Errors
Although the simulation software catches all the errors that it can, errors
that cannot be checked for in advance are trapped by the hardware and
posted by the simulation software.

--- Fixup Overflow ---

A floating point overflow occurred, and the software tried to
compensate by substituting the largest possible real number.
Simulation proceeds, although the results may be suspect.

--- FORMAT CONVERSION ERROR ---

--- FLOATING DIVIDE BY ZERO ---

--- INTEGER DIVIDE BY ZERO ---

--- SIGNIFICANCE LOST IN MATH LIB ---

--- MATH LIBRARY OVERFLOW ---

--- INVALID ARGUMENT TO MATH LIBRARY ---

--- LOGARITHM OF ZERO OR NEGATIVE VALUE ---

--- UNDEFINED EXPONENTIATION 0.**0 ---

--- FLOATING OVERFLOW ---

--- INTEGER OVERFLOW ---

Operating System Errors
The following errors are also caught by the operating system and report an
I/O error or other catastrophic system failure. If any of them occurs, contact
your National Instruments representative.

--- OPEN OR DEVICE ERROR ---

--- INTERNAL IO ERROR ---

--- REWIND ERROR ---

--- RESERVED OPERAND ERROR ---

© National Instruments Corporation 9-1 SystemBuild User Guide

9
Interactive Simulation

This chapter describes interactive simulation (ISIM) in SystemBuild. You
can animate a simulation session by placing interactive input and display
icons into your SystemBuild model. Interactive simulation is helpful in
debugging models.

Using ISIM, you can quickly build up IA diagrams that resemble control
panel displays as part of a SystemBuild model. You can include IA block
icons representing analog and digital control and display blocks, adjust the
attributes and parameters of the block icons to fit the model needs, and
connect the icons to inputs and outputs of interest in the SystemBuild
model.

Building a model that has simulation displays and controls is no different
from building the rest of your model. You can select a block icon from a
palette, drag it into place, define attributes through an on-screen dialog, and
connect the icon to other block icons.

When you finish your model and simulate it interactively, an ISIM display
window appears. You can start, stop, restart, and resume simulation, step
through blocks, view selected outputs, modify selected parameters during
simulation, and other functions.

You can execute ISIM as a background task under Xmath, which allows
you to enter commands in the Xmath Commands window as the interactive
simulation is running.

The primary topics in this chapter are:

• Interactive Simulation Versus Interactive Animation

• Constructing an ISIM Model

• Running ISIM

• Using the Run-Time Variable Editor

Chapter 9 Interactive Simulation

SystemBuild User Guide 9-2 ni.com

Interactive Simulation Versus Interactive Animation
Interactive simulation contrasts with Interactive Animation (IA), an
optional SystemBuild package that lets you build separate standalone
control panel displays for monitoring and controlling SystemBuild
simulations and the RealSim hardware interface. Refer to Table 9-1
for an illustration of the differences between ISIM and IA.

For a complete treatment of IA, refer to the SystemBuild Interactive
Animation User Guide.

Constructing an ISIM Model
Constructing an ISIM model involves little more than adding IA block
icons to a SystemBuild model. Outputs to be displayed may be taken from
any output pin of any block, and inputs to the model can replace any
internal or external inputs of the block diagram.

Table 9-1. ISIM and IA Compared

Interactive Simulation (ISIM) Interactive Animation (IA)

Operates inside SystemBuild only.
Invoked by calling sim() with
the interact keyword, or
enabling Interactive on the
SystemBuild Simulation
Parameters dialog.

Operates standalone only.

Block icons are placed inside
SystemBuild block diagrams.

A special IA Builder window is
used to construct block icon
diagrams.

Icons are part of the block diagram
and stored with the SystemBuild
model file.

Icons are in separate .pic files,
linked to SystemBuild diagrams.
An IA translator converts .pic
files to SuperBlocks for RealSim
use.

Provided as part of SystemBuild. Optional.

Chapter 9 Interactive Simulation

© National Instruments Corporation 9-3 SystemBuild User Guide

Using the IA Palettes
The IA icons are invoked from a set of palettes that is available from the
SystemBuild toolbar. The IA palettes are discussed in the SystemBuild
Interactive Animation User Guide.

Note It is not necessary to include IA icons in your model to take advantage of the other
ISIM features (data display, block and time stepping, RVE, and so forth). However, IA
icons are the most convenient way to observe or set internal simulation values while the
simulation is executing.

To add an IA icon to your SystemBuild model, complete the following
steps:

1. Click the IA button to raise the palette.

Because SystemBuild is in a modal state when the IA palette is open,
you can display only one IA palette at a time.

2. Click one of the boxes at the bottom of the Animation Palette to see a
different set of icons.

You can select a specific set of icons by clicking its field directly—for
example, clicking MI bring up the Monitor Animation Icons. Some of
the icon sets appear on two pages. To change pages, click 1 or 2.
Alternatively, you can rotate through the sets of icons by clicking
- Icon Set - or + Icon Set +. The latter method does not change pages
within a set of icons.

The current set of icons contains asterisks on either side of its field
mnemonic, and the name of the set appears in the bottom center field
of the palette.

3. Drag an icon into the editor.

4. Connect the icon as though it were a SystemBuild block.

5. To modify its parameters, select the block, and press <Enter> or
<Return> to raise the IA icon dialog.

Building an ISIM Car Model
In this section, we load an existing model. It has several test points and
control points we might want to study. At a minimum, we can add a
speedometer and an accelerometer and replace each of the external inputs
with an IA signal source. In this example, you can manually change the
throttle setting, brake position, and road incline while the simulation is
running.

Chapter 9 Interactive Simulation

SystemBuild User Guide 9-4 ni.com

To load the model and view it in the editor, complete the following steps:

1. Load the file named $SYSBLD/examples/auto/cruise_d.cat.

2. Edit the SuperBlock, continuous_automobile, shown in the
following figure.

To add a output icons to the model, complete the following steps:

1. Click the IA button in the SystemBuild toolbar.

The palette of IA icons appears.

2. Select the Single Line strip chart icon from the Monitor Animation
Icons, and drag it toward the right side of the screen.

Do not worry about exact placement of the icon: you can move it later.

3. Raise the icon dialog, and change the following fields:

Icon Title to Speedometer

Y-axis Label to Speed

Minimum Value to 0

Maximum Value at 100 (no change)

Change the color, and then click DONE.

4. When the Speedometer icon appears on the screen, move it to the right
side of the display. If you need to fit the diagram to the window (with
the mouse cursor in open space, type f to make all the icons fit on the
display.

Chapter 9 Interactive Simulation

© National Instruments Corporation 9-5 SystemBuild User Guide

5. To hook up the Speedometer, click the middle mouse button in the
Car Inertia block and then in the Speedometer icon.

Observe that the connection is made.

6. Add an Accelerometer icon. Follow the steps for the Speedometer
icon, but give it the name Accelerometer, change the Y-axis Label
to Acceleration, and change the limits to -10 and +10. Change the
First Threshold to Change Color setting to 0 and the Second Threshold
to Change Color to 5. Change the color, and then click DONE.

7. Move the Accelerometer to a convenient location near the top of the
display. Connect the Accelerometer Gain block to the Accelerometer
display icon.

To add input icons to the model, complete the following steps:

1. Put in a Slide icon to furnish a road inclination. Select the icon from
page 1 of the Controller Animation Icons, and give it the name, Road
Inclination. Change the limits to -10 and +10, and change the
Negative Decrement and the Positive Increment to 0.1. Change the
color, and then click DONE.

2. Connect the slide switch to the input side of the Percent to Angle Gain
block. Click the middle mouse button in the slide switch and then in
the Gain block. When the Connections Editor appears, click to connect
these blocks, just like any other. Click DONE to release the
Connection Editor.

Observe that the connection to the slide switch replaces the external
input to the Gain block. External inputs thus displaced still remain in
the count of external inputs in the SuperBlock ID bar at the top of the
screen.

3. Add a brake control by placing another slide switch somewhere near
the bottom middle of the screen. Give it a name, Brake. Make the
limits 0 and 1. Change the Positive Increment to 0.01, which gives
a delicate range of brake controls. Change the color, and then click
DONE.

4. Connect the brake switch to the brake input Gain block.

Observe that the brake external input vanishes.

5. Add a throttle control by placing another slide switch somewhere near
the lower-left side of the display. Name it Throttle. Change the
limits to 0 and 1 and change the Positive Increment to 0.01. Change
the color, and then click DONE.

6. Connect the icon to the summing junction at the left side of the engine
part of the model.

Chapter 9 Interactive Simulation

SystemBuild User Guide 9-6 ni.com

7. Set the number of external inputs to 0 in the SuperBlock Properties
dialog box since we are providing inputs through the IA icons.

8. Compare your completed model to Figure 9-1.

Figure 9-1. Diagram with Input and Output Icons

Running ISIM
In this section, we tell you how to run ISIM, what components you can
expect in the ISIM window, provide some general information about ISIM,
and finally have you run the car model that you completed in the previous
section.

Keywords and Syntax for Running ISIM

Invoking ISIM
To invoke ISIM from Xmath:

sim("model", t_vector, ...,{interact, ...});

where the model name and time vector are required. In the above syntax,
... represents any optional input, such as the u vector, and additional
simulation keywords.

Chapter 9 Interactive Simulation

© National Instruments Corporation 9-7 SystemBuild User Guide

To invoke ISIM from the SuperBlock Editor, complete the following steps:

1. Click Tools»Simulate.

2. Enable the Interactive checkbox, supply a t vector, and any other
optional input in this dialog.

3. Click OK.

Invoking ISIM for a Specific SuperBlock
Use the sbview keyword to specify a specific SuperBlock. For example,
if top is the SuperBlock name, specify:

sim("model", t_vector, ...,{interact,sbview="top"});

The sbview keyword is only available from the sim() command in
Xmath. It might be discontinued in future versions.

Invoking Non-Interactive Simulation with IA Blocks
In non-interactive simulation, IA display icons have no effect, while IA
input icons are held at their initial values. If the interact keyword is not
present in the sim() call, the simulator defaults to non-interactive
simulation mode.

sim(...,{!interact}) #or

sim(...,{interact = 0})

To make ISIM the default, execute the command:

setsbdefault {interact=1}

Pausing ISIM at a Non-Zero Time
sim(...,{interact, iahold = pausetm})

where pausetm is in the same units as the time vector of the simulation and
must be less than the simulation duration established by the time vector.

Chapter 9 Interactive Simulation

SystemBuild User Guide 9-8 ni.com

ISIM Window
When you start the interactive simulation, the ISIM window opens with the
SuperBlock that you are simulating. At first glance, it is very much like the
SuperBuild Editor. Notice, however, that the toolbar immediately below
the menu bar is different.

You can select ISIM options from the toolbar or from a pull-down menu:

RVE Invokes the Run-Time Variable Editor (RVE) that allows
you to change the value of a %Variable at a point in an
interactive simulation. Refer to the Using the Run-Time
Variable Editor section for a complete treatment of RVE.

View
Parent

Displays the SuperBlock containing the current instance of
the currently displayed SuperBlock.

Reset Initialize the model to its initial conditions (from the
SystemBuild catalog), with the input icon settings
preserved from the previous run.

Pause Pause (“hold”) the simulation while it is running, clicking
this button temporarily halts (“holds”) the simulation. Also
refer to the Hold Time field.

Resume To start a simulation, or restart a paused simulation, click
the Resume button. When the simulation reaches the end
of the time line, all buttons are disabled, with the exception
of the Reset button.

Block Step Show the order of block computations. With ISIM paused
or not yet started, repeatedly click the Block Step button to
view the sequence of block executions. The next block to
fire is highlighted.

If you step through an interactive simulation all the way
to the end, all buttons are disabled until you click Reset
(or you exit the simulation).

Chapter 9 Interactive Simulation

© National Instruments Corporation 9-9 SystemBuild User Guide

Special Notes on ISIM
• A principal use of ISIM is for debugging SystemBuild designs. Attach

a numeric output icon to any signals of interest (for example, to every
output of every block), and run the model in Blockstep mode. The
outputs are updated as you proceed.

• By default, IA icons update at each input time point, but you can
specify less frequent updates in the Icon dialog box by entering a value
in the Sampling Interval field.

• You can click IA input icons any time the simulation is running or
paused and change any input value.

• To monitor the outputs of any block in your model, place the mouse
cursor on the block and type v. The output labels are replaced by the
current values on each of the output pins of the block. Every time you
click either Timestep or Blockstep (individually) or Resume followed
by Pause, the values are updated. Only the labels are displayed while
you are running the simulation. You can monitor the outputs of any
number of blocks. To turn off the feature, put the cursor on the block
and type v.

• The current simulation time is always displayed in the lower-right
corner of the ISIM window.

• You can choose global or local block step mode on the Debug menu
(option enabled or disabled). If global, the Block Step button causes
the interactive simulator to step to the next block that is to be executed.
However, the next block could be in another SuperBlock. If local, the

Local
Block
Stepping

If enabled, limits block stepping to the currently displayed
SuperBlocks. The simulation does not stop on blocks
outside this SuperBlock. This option is only available from
the Debug menu.

Time Step Execute a single time step of the simulation. The time step
is determined by the simulation time vector.

Hold Time This allows you to specify a time for the simulation to
pause. After you start the simulation (by clicking Resume
on the icon bar), it runs as long as current time is less than
hold time. When the current time reaches the specified hold
time, the simulation pauses. After making any desired
changes to your IA icons, click Resume to start the
simulation again. For a way of using hold time, refer
to Example 9-1.

Chapter 9 Interactive Simulation

SystemBuild User Guide 9-10 ni.com

Block Step button resumes the simulation and pauses only when the
next block is the currently viewed SuperBlock. Intervening blocks that
are outside this SuperBlock are executed but do not cause the
simulation to halt.

• You can run ISIM on any SuperBlock from which simulation is
available.

• You can redefine the parameters of an IA icon while the simulation is
running or is paused. Simply point the cursor at the icon and press
<Enter> or <Return>. Values thus changed pertain to this simulation
run only and are not kept.

• You can resize IA icons by placing the cursor in the ID area in the
upper right corner of the icon and clicking and stretching with the left
mouse button.

• To change the color of a icon on the screen, move the cursor to the icon
and then repeatedly press the <’> (apostrophe) key to cycle through the
colors.

• You can add user-written icons and palettes of icons to the IA palettes.
For more on this subject, refer to the SystemBuild Interactive
Animation User Guide.

Simulating the Car Model
Complete the following steps to simulate the car model using ISIM:

1. In the Xmath command area, create a time vector large enough to give
you a little time at the wheel:

t = [0:0.1:1000]';

Depending on the speed of your system, the number of time points
specified might not be enough to exercise the model adequately.
Change this parameter as necessary.

2. Run the simulation on the modified model using the sim()
command:

y = sim("continuous automobile", t, {interact});

You can observe a display of your ISIM model in the Interactive
Simulator window.

3. Click the Time Step button to advance the simulation one step. Click
the Resume button once to start the simulation and the Pause button
to pause the simulation.

Chapter 9 Interactive Simulation

© National Instruments Corporation 9-11 SystemBuild User Guide

4. Test the controls before putting the car in motion. Click the Time Step
button once to see the Current Time setting move. Move the slide
switches back and forth, and observe that the changed values appear in
the icons.

5. Put on your wraparound shades and driving gloves, and click the
Resume button. Move the throttle slide forward gingerly and learn
to drive all over again.

6. When you are ready to stop, click the Pause button. After you pause,
select File»Exit to exit simulation and return to Xmath.

Using the Run-Time Variable Editor
The Run-Time Variable Editor (RVE) allows you to change %Variables
and variable blocks during the execution of an interactive simulation,
AutoCode-generated code session, or RealSim test-bed session. For ISIM
operation, it operates through the RVE button on the ISIM toolbar. This
feature differs from ISIM input icons that allow you to interact with
the input channels of the primitive blocks, where RVE allows you to
manipulate selected intrinsic block parameters whose values can be
adjusted at simulation time. For a complete treatment of %Variables,
refer to the Changing Parameters for Repeated Simulations section of
Chapter 8, Simulator Basics.

Figure 9-2 shows the connections of RVE in ISIM and RealSim systems. In
the ISIM context within SystemBuild, as shown in the left side of
Figure 9-2, the RVE software is part of the ISIM program, and you interact
with both ISIM and RVE through the ISIM toolbar. As shown in the right
side of Figure 9-2, the situation with RealSim is more complex. By default
the RealSim Client Control Panel is used, which contains an RVE GUI.
Also, if desired, a mechanism to access RealSim RVE from Xmath is
supplied. Separate copies of the RVE software are maintained for the
RealSim Client Control Panel and for Xmath, and they communicate with
each other to service user Xmath requests. The RealSim Control Panel copy
of RVE also communicates with RealSim to perform the user interface for
RVE on the hardware testbed, and the Xmath copy of RVE communicates
with the RealSim to perform RVE script processing.

Chapter 9 Interactive Simulation

SystemBuild User Guide 9-12 ni.com

Figure 9-2. RVE in ISIM and RealSim Contexts

RVE and ISIM
This procedure explains using RVE from ISIM. The term run-time variable
appears throughout this discussion: it refers interchangeably to both
variable block variables and the subset of %Variables that are supported by
RVE (refer to Table 9-2,) which are treated in the same way by RVE. The
procedures for AutoCode and RealSim are similar. Refer to the AutoCode
User Guide and the RealSim User Guide for details.

ISIM/RVE

RealSim Controller

Xmath

ISIM
Control Panel

Xmath

Interactive Simulation

rve_update
rve_get

rve_put

User

RVE

Interaction

Alternate Path

Data
Object

RealSim Client
Control Panel

User Interaction

IAClient
Messages

NGC IA Client

RealSim Paradigm

RVE
Data

Object

RVE
GFX

RVE
XI/O

RVE
XI/O

Paradigm

rve_update
rve_get

rve_put

Chapter 9 Interactive Simulation

© National Instruments Corporation 9-13 SystemBuild User Guide

To use the Run-Time Variable Editor, complete the following steps:

1. Prepare your model for simulation.

You must have one or more run-time variables in the model, although
having ISIM icons in the model is optional.

2. Copy your run-time variable into the Xmath data area and give it an
initial value.

If you are working with %Variables, use one of the following ways to
accomplish this:

• When you enter the %Variable, press <Ctrl-p> on the keyboard,
and SystemBuild enters the variable automatically.

• Enter it explicitly by typing the variable name in the Xmath
command area and setting it equal to the initial value for your
simulation.

Either way, the %Variable acquires an initial value as required
by RVE.

If you are using Variable block variables, SystemBuild initializes
them. If you have given them no value, the default is 0.

3. When you run the simulation, make sure that the interact keyword
is set to TRUE.

You can enable Interactive on the Parameters tab of the SystemBuild
Simulation Parameters dialog box or by including the interact
keyword in a sim() command issued from Xmath. Because you are
simulating interactively, the Interactive Simulator window appears
when you execute the sim() command.

4. Invoke RVE selecting Edit»Variables or by clicking the RVE button
on the ISIM toolbar.

The simulation may be executing during the editing process, or it may
be paused. Figure 9-3 shows a typical Run-Time Variable Editor.

Chapter 9 Interactive Simulation

SystemBuild User Guide 9-14 ni.com

Figure 9-3. Run-Time Variable Editor

5. To change a column width, click a divider and drag it left or right.
To edit a variable, double-click its name, or select the name, and then
select Edit»Open.

You may add new values into the variable spreadsheet or define them
from the Xmath command area.

6. After you have edited the variable, click OK.

This causes the RVE to be displayed again. You may now select and
change another run-time variable. There is no limit to the number of
run-time variables you can change.

7. When you are finished adjusting the variable values, use Edit»Select
Modified to select the changed variables. Then select Edit»
Download, or click the Download button on the browser toolbar to
complete the edit.

The new run-time variable values are available immediately. If the
simulation is running while the edit is taking place, the edit applies to
the next sim time step.

Example 9-1 gives a step-by-step example of using RVE.

Example 9-1 Edit the Predator-Prey Model During a Simulation

In the following example, we run part of a simulation with a critical
parameter at one value and then stop and change the value of that
parameter.

To use RVE with the pred-prey model, complete the following steps:

1. To copy the data to your current working directory, type:

copyfile "$SYSBLD/examples/pred_prey/pred_prey.cat"

Chapter 9 Interactive Simulation

© National Instruments Corporation 9-15 SystemBuild User Guide

2. Load the file. From the Catalog Browser, open Predator_Prey.

The Efficency_factor Gain block is parameterized through the %k
parameter.

3. To initialize this gain, define it in the Xmath command area:

k = .5;

4. Enter values for t (time) and u (input):

t = [0:.1:100]';

u = [ones(t)];

Note Select Tools»Simulate to raise the SystemBuild Simulation Parameters dialog.
Type t in the Time Vector/Variable field and u in the Input Data/Variable field. In the lower
right portion of the dialog, enable Plot Outputs and Interactive simulation. Click OK.

5. When the ISIM window appears, enter 50 in the Hold Time field (on
the icon bar), and then click the Resume button (the green triangle).

Observe that the Time field in the lower-right corner of the ISIM
window advances until it reaches 50 and then stops.

6. Click the RVE button.

7. In the Run-Time Variable Editor, double-click k. Change the value of
k from .5 to .9. Click OK.

8. Back in the Run-Time Variable Editor, select k, and then click the
Download button.

9. Back in the ISIM main window, click Resume.

Observe that the Time indicator advances to 100 and then stops.

10. Select File»Exit to return to the SuperBlock Editor.

The plot produced should look like Figure 9-4.

Chapter 9 Interactive Simulation

SystemBuild User Guide 9-16 ni.com

Figure 9-4. Plot with Run-Time Variable Editing Illustrated

An examination of Figure 9-4 shows how changing a parameter of a
model can make significant changes in the simulation. In the left half
of the plot before time point 50 is reached, predator (below) and prey
(above) populations are interacting in a certain balance. Increasing the
Efficiency_factor, k, at 50 corresponds to an increase in the
efficiency of the predator, and the amplitude of the population of
predators increases: at certain times in the cycle, there are more
predators than ever before. This increase is at the expense of a
considerable diminution in the prey population, which, at best, is
scarcely more than half its previous maximum size. And the predator
population suffers, too, as can be seen at the predators’ minimum
population level, which is lower than it ever was in the past.

RVE Commands and Functions
You can operate and control RVE from Xmath. A full set of Xmath
commands and functions allows you to write MathScripts that perform all
the RVE functionality documented in this section. You must run ISIM in
background to use these commands.

Chapter 9 Interactive Simulation

© National Instruments Corporation 9-17 SystemBuild User Guide

To run ISIM in the background, specify one of the following:

sim(...{bg})

setsbdefault, {bg = 1}

These commands are treated in more detail in the MATRIXx Help. To see a
complete listing of the RVE commands in the MATRIXx Help, type help
rve in the Xmath command area, or select the RVE topic from the
SystemBuild Help area. From this point you can navigate to a complete
description of the following functions.

Function Desciption

rve_start Enable RVE and its commands and functions. No RVE
commands or function calls can be used until an
rve_start has been executed. RVE_start only
works after ISIM has been started, or the
attach_realsim() function has attached Xmath
to a RealSim session.

rve_stop Disables RVE and its commands and functions. No
RVE command can be executed after an rve_stop
except rve_quit to terminate the session or
rve_start to reenable the RVE commands.

rve_get("var_name") Retrieves the current copy of a run-time variable from
the RVE workspace.

rve_put("var_name", var_val); Assign the value var_value to run-time variable
var_name. This value is in an intermediate state now
and is not available until an rve_update command is
issued.

rve_reset("var_name") Resets the working copy of a run-time variable. If a
variable has been modified via the rve_put command
and has not been updated yet, the rve_reset
command resets the working copy of the run-time
variable to match the simulation.

Chapter 9 Interactive Simulation

SystemBuild User Guide 9-18 ni.com

RVE-Compatible Blocks
Table 9-2 shows the blocks that you can use with RVE. Most %Variables
on most blocks are compatible with this feature.

rve_update("var_list_str") Updates the %Variables in the simulation with the
contents of the RVE workspace. The RVE workspace is
modified with the command rve_put. All the modified
fields in the RVE workspace are updated in the
simulation by default. If any run-time variables are
specified, then only those variables are updated.

rve_info Retrieves and displays the names of all the run-time
variables that are in the model and its current status and
update status. The return value, output, is binary: 1 if
the operation is successful, 0 if not.

rve_quit Detaches Xmath from RealSim. This command is not
intended for ISIM.

attach_realsim Attaches this Xmath session to a RealSim session
(rtmpg) that is currently running. The run-time
variable output is locked while you are attached to
RealSim.

Table 9-2. Blocks Supported in RVE

Block Type Supported Parameters
Unsupported
Parameters

AlgebraicExpression “P” parameters Equation String,
Initial Values

BiLinearInterp Input1Points, Input2Points, OutputValues —

BlockScript Block dependent—right arguments only —

ConstantInterp InputPoints, OutputValues —

ConstantPowerU Constant(s) —

DeadBand Deadband(s) —

Decoder InMin, InMax —

Encoder OutMin, OutMax —

Function Desciption

Chapter 9 Interactive Simulation

© National Instruments Corporation 9-19 SystemBuild User Guide

Gain Gain(s) —

Hysteresis Width, Slope InitStates

LimitedIntegrator Upper, Lower, OutGain InitStates

LinearInterp InputPoints, OutputValues —

Limiter Lower Bound(s), Upper Bound(s) —

MultiLinearInterp Input1Points, Input2Points, Input3Points,
Input4Points, Input5Points, Input6Points,
Input7Points, Input8Points, OutputValues

InputLinDelta

PIDController PGain, IGain, DGain, DTimeConst InitStates

Polynomial Coefficients —

Preload Preload(s), Slope(s) —

PulseTrain StartTime, Magnitude, Width, Frequency —

Quantization Resolution —

Ramp StartTime, Slope, Limit —

ReadVariable Variables —

Saturation Saturation Limit(s) —

SquareWave StartTime, Magnitude, Width, Frequency —

Step StartTime, Magnitude —

SinWave StartTime, Magnitude, Phase, Frequency —

UPowerConstant Constant(s) —

Waveform StartTime, TimeCoord, SignalCoord —

WriteVariable Variables —

Table 9-2. Blocks Supported in RVE (Continued)

Block Type Supported Parameters
Unsupported
Parameters

Chapter 9 Interactive Simulation

SystemBuild User Guide 9-20 ni.com

In most cases, the following blocks are not supported in RVE because there
are no numeric values associated with the block. In some cases, the
simulator transforms the block to optimize its execution (as in the
UniformRandom block), so that numeric entries are not available internally
during simulation time:

AbsoluteValue Acos Asin

Atan2 AxisInverse AxisRotation

BiCubicInterp Break BreakPoints

Cartesian2Polar Cartesian2Spherical ComplexPoleZero

Condition Continue Cos

CosAsin CosAtan2 CrossProduct

CubicSplineInterp DataPathSwitch DataStore

DotProduct ElementDivision ElementProduct

Exponential FuzzyLogic GainScheduler

IfThenElse implicitUserCode Integrator

LinearInterpTable Logarithm LogicalExpression

LogicalOperator MathScriptBlock NormalRandom

NumDen Polar2Cartesian PoleZero

RelationalOperator Sequencer ShiftRegister

SignedSquareRoot Sin SinAtan2

Spherical2Cartesian SpringMassDamper SquareRoot

StateSpace STD Stop

Summer SuperBlock Text

TimeDelay TypeConversion UniformRandom

UserCode While ZeroCrossing

© National Instruments Corporation 10-1 SystemBuild User Guide

10
Linearization

The lin() function is used to linearize a continuous, single rate or
multirate discrete, or hybrid system about an operating point. SystemBuild
supports both explicit and implicit forms of linearization. For explicit
linearization, a linear Xmath system object is returned. For implicit
linearization, an Xmath list object is returned. Unless otherwise specified,
the initial inputs are set to zero and the operating point for linearization is
given by the catalog definition of the initial states.

Simple systems (purely continuous or purely discrete), where all
SuperBlocks have the same computational timing attributes, are linearized
either by evaluating exactly linearized models for the nonlinear functions
or by using finite-difference approximation.1 Multirate or hybrid systems
are linearized using the Kalman-Bertram method. The forms of the lin()
function are:

sys = lin("model",{keywords})
list = lin("model",{implicit,other keywords})

The required input model is the name of the SystemBuild model to be
linearized. Keywords are optional, except in the implicit case, where the
keyword implicit must be present. To see a full description of each
keyword, type help lin from the Xmath command area.

sys is the Xmath system object in state-space form. sys incorporates the
(A, B, C, D) matrices of a system into an Xmath system object.

The implicit form of linearization is:

1 Computational attributes are defined as the timing attributes and requirements of the SuperBlock.

Ex· Ax Bu+=

y Fx· Cx Du+ +=

Chapter 10 Linearization

SystemBuild User Guide 10-2 ni.com

In the implicit form, the list output has eleven items:

Linearizing Single-Rate Systems About an Initial
Operating Point

Continuous Systems
Continuous systems are represented by the following non-linear
differential and output equations:

(10-1)

where y is the system output vector, is the time derivative of the state
vector, x is the state vector, and u is the external input vector.

Explicit Form
The linearized system matrix in explicit form is:

list(1) = A

(2) = B

(3) = C

(4) = D

(5) = E

(6) = F

(7) = tsamp

(8) =

(9) =

(10) =

(11) =

x· f x u,()=

y g x u,()=

x·

x·

y
A B
C D

x
u

=

Chapter 10 Linearization

© National Instruments Corporation 10-3 SystemBuild User Guide

where

Implicit Form
The implicit linearization form assumes the system is in
differential-algebraic form:

and the linearization becomes:

where

(10-2)

(10-3)

Time is assumed to be zero.

For continuous systems, algebraic loops are resolved—that is, lin()
always computes consistent values for algebraic loops, if any, except
when the implicit keyword is used. For discrete subsystems
algebraic loops are resolved by default. If you do not want algebraic

A
x∂

∂f=
x0 u0,

B
u∂

∂f=
x0 u0,

C
x∂

∂g=
x0 u0,

D
u∂

∂g=
x0 u0,

0 f x· x u, ,()=()
y g x· x u, ,()=()

Ex· Ax Bu+=[]
y Fx· Cx Du+ +=()

E
x·∂

∂ f()–
x·0 x0 u0, ,

A
x∂

∂f
x·0 x0 u0, ,

B
u∂

∂f
x·0 x0 u0, ,

=;=;=

F
x·∂

∂g
x·0 x0 u0, ,

C
x∂

∂g
x·0 x0 u0, ,

D;=;
u∂

∂g
x·0 x0 u0, ,

= =

Chapter 10 Linearization

SystemBuild User Guide 10-4 ni.com

loops to be resolved, specify algloop = 0. Notice that algebraic loop
delays appear as additional states when this is done.

Discrete Systems
Each discrete subsystem is represented by the following difference
equations:

(10-4)

where z represents the algebraic loop variables (if any) in the model. When
algloop = 1 (the default case), the variable zk is eliminated by a
Newton-Raphson root-solving method, and the equations are reduced to:

After this step, the explicit equations are linearized. When algloop = 0,
the variable zk is not eliminated. Instead, a delay is added to the zk term such
that it becomes:

Thus, a new state vector is obtained by appending xk and zk – 1. If this new
state is represented as X, then, as before, the equations become of the form:

As shown, f is actually going to change when we do the math, and the
linearization is performed on these equations. As a result, every algebraic
loop reported by SystemBuild becomes a new state in this linearization.

xk 1+ f xk uk zk 1+, ,() Xk f Xk Uk Zk, ,()= =

zk 1+ h xk uk zk 1+, ,()= Zk h Xk Uk Zk, ,()=

yk g xk uk zk 1+, ,()= Yk g Xk Uk Zk, ,()=

Xk 1+ f xk uk,()=

yk g xk uk,()=

zk h Xk Uk Zk 1–, ,()=

Xk 1+ f Xk uk,()=

yk g Xk uk,()=

Chapter 10 Linearization

© National Instruments Corporation 10-5 SystemBuild User Guide

Exact Versus Finite Difference Linearization
Many SystemBuild blocks have built-in exact linearizations, but the
following do not:

• AlgebraicExpression

• LogicalExpression

• FuzzyLogic

• MultiLinearInterp

• UserCode

In the above blocks, when any (or all) of the perturbation vectors are
specified through the keywords du, dx, and dxdot, the linearization
defaults to a central finite-difference linearization.

Special Linear Models

Continuous Time Delay
For lin(), the continuous time delay is modeled by a state-space
representation using a Padé approximation:

with the order of N = order of (D – 1)

This representation approximates e–sτ. The order can be from 0 to 10, which
is selected in the block dialog box of the time delay block.

The initial conditions for the states in the continuous time delay model are
assumed to be zero. However, you can change them from the dialog.
Use the analyze() function to determine the names of the states.
analyze() returns a list object in which the state names are the ninth
element:

SBinfo = analyze("model",{keywords});
snames=SBinfo(9)?

H s() N s()
D s()
-----------=

Chapter 10 Linearization

SystemBuild User Guide 10-6 ni.com

State Transition Diagrams
State transition diagrams (STDs) are used in a linearization only to
compute the system operating point. This means that initial state values are
used to determine state transition conditions and then, based on these
calculations, new output values (either 0 or 1) are computed. These values
form the operating point for the STD. Thereafter, the STD is not perturbed
during linearization, the linearized model is zero, and the STD states are not
included in the state-space representation.

FuzzyLogic Block
The FuzzyLogic block is treated as an algebraic block in linearization. The
linearized model uses finite differences, and the perturbation value can be
defined in the FuzzyLogic block dialog.

Integrator Block (Resettable)
The linear model for the resettable Integrator is an nth-order integrator. The
resettable nature of the block is ignored during linearization.

UserCode Blocks
If you are writing UserCode blocks, code template files usr01.c and
usr01.f are provided in the directory SYSBLD/src. The function
template usr01 aids in specifying exact linearization models. Refer to
Chapter 14, UserCode Blocks, for more information. If the template
linearization is not in usr01, the default linearization is by finite
differences.

Procedure SuperBlocks Referenced from Condition Blocks
In linearization, procedure SuperBlocks referenced from Condition blocks
are treated as if they were algebraic. Thus, the linearization of these blocks
becomes 0.

Linearizing Single-Rate Systems About a Final
Operating Point

To linearize a single-rate system at a certain operating point, you must first
perform:

y = sim("model",t,u)
sys = lin("model",{resume});

Chapter 10 Linearization

© National Instruments Corporation 10-7 SystemBuild User Guide

The resume keyword indicates that the linearization operating point is the
final operating point of the previous simulation. To save the operating point
at the end of the simulation, specify the lin() options
resumeto=filename and resumefrom=filename.

Alternatively, you can simulate the model until you reach the desired
operating point:

y = sim("model",t,u);

Find the state at that operating point:

[x] = simout("model");

Linearize around the operating point:

sys = lin("model",{u0=u(length(t),:),x0=x})

Multirate Linearization
MATRIXx multirate linearization is based on one of two methods, both of
which return a single-rate discrete linear system:

• Kalman-Bertram method—is based on simulations over the basic
time period (BTP), which is defined as the least common multiple
(LCM) of all subsystem sampling intervals. For multirate systems with
rates that are integer multiples, the basic time period is the slowest rate
in the system. The BTP is also the sampling interval of the resulting
model. The highest frequency in the model is 0.5/BTP, which is less
than or equal to the highest frequency of all subsystems. The states of
the new single-rate system correspond to the continuous states and all
the discrete states appended together.

• Subsystem method—is based on linearization and rate transformation
of individual subsystems. The resulting model generally has more
states than the original one as a consequence of the methods used for
rate transformation and the appending of delay filters. The highest
frequency in the model is at least as large as the highest frequency
of all subsystems.

For additional information on multirate linearization, refer to [A80] and
[G83] in Appendix A, Bibliography.

Chapter 10 Linearization

SystemBuild User Guide 10-8 ni.com

Kalman-Bertram Method
In the Kalman-Bertram method, the state transition matrix is computed by
perturbing the solution over the basic time period with respect to the initial
conditions. The default perturbation value dx for the finite difference
calculation is dx = 0.001 * (1 + abs(x0)), where x0 is the initial state vector.
If x0 is zero, the perturbation value is 0.001.

The perturbation values for multirate linearization can be defined using the
keywords du, dx, and dxdot. The syntax is the same as in the single-rate
case.

The Kalman-Bertram method requires that all samplers of discrete systems
sample at the beginning and end of the basic time period because signals in
discrete systems are not defined between samples. btptol is a lin()
keyword with a default value of 0.001. In this implementation, the basic
time period starts at zero and all skews must be less than 1e−6. However,
the sample rates may be asynchronous. btptol must be greater than zero.
Smaller values of btptol more closely approximate systems with rates
that are integer multiples. Larger values of btptol allow modeling of
systems with asynchronous rates.

The basic time period, then, is the first time when the samplers sample
within a tolerance of each other, where the tolerance is proportional to
btptol. Hence, for asynchronous systems, a smaller btptol results in
a longer basic time period.

At the end of the basic time period, all discrete subsystems are executed and
their states computed. Suppose you specify:

y=sim("model",t,u);
sys=lin("model",{resume})?

The simulation must end at t, which should be a multiple of the basic time
period, to obtain a correct multirate linearization result.

Interpretation of Multirate lin Results
It is useful to review the theory of the Kalman-Bertram method to
understand the meaning of the equivalent single-rate linear system that is
obtained. For example, you can ask questions such as, “In what sense are
the systems equivalent? How well does the single-rate system match the
response of the multirate system?”

Chapter 10 Linearization

© National Instruments Corporation 10-9 SystemBuild User Guide

Consider a simple hybrid linear system of the form shown in Figure 10-1.

Figure 10-1. Hybrid Linear System

Suppose the system uses these equations:

In this system, x1 = vector of continuous states, and x2 = vector of discrete
states.

To apply the Kalman-Bertram method, we need to compute an overall state
transition matrix over the slowest rate in the system by completing the
following steps:

1. Compute the state transition matrix from t = 0 to t = T− for the
continuous system.

2. Compute the state transition matrix for the discrete system from t = T–
to t = T+. The continuous state equation is computed as follows:

Continuous
Subsystem

Discrete

u
y

c

u
x 2

x1

y
d

Subsystem

yc Ccx1 Dcu1+=

x2 k 1+() Adx2 k() Bdu2 k()+=

x·1 Acx1 Bcu1+=

yd k() Cdx2 k() Ddu2 k()+=

u1 B11x2 B12u+=

u2 B21x1 B22u+=

x·1

x·2

u·

Ac BcB11 BcB12

0 0 0
0 0 0

x1

x2

u

=

F Matrix

Chapter 10 Linearization

SystemBuild User Guide 10-10 ni.com

The second row of the matrix F is zero because the discrete states are
assumed to be constant over the sample interval. The third row is zero
because the external input is held to a constant value over the same interval.
This assumption is an important simplification for the Kalman-Bertram
method, implying that a zero-order hold and sampler are applied at the
input to the system and the sample interval of the sampler is the basic time
period. The discrete state equation is computed as follows:

For this part of the computation, the continuous states are held constant, as
can be seen from the first row of G below. Also, as seen by the last row of
G, inputs are assumed to be constant over the update of the discrete system.
This means that the sampler on the external inputs is not updated until after
discrete subsystems are updated.

The overall state transition matrix is:

The single-rate system state equation is:

Where and Φ1, Φ2 are submatrices of Φ.

We are now ready to discuss some aspects of this method. Because the input
is held constant over the calculation of the state transition matrix, you can
observe that for linear systems, the Kalman-Bertram method gives a good
match to the steady-state step response of the multirate system. As the
frequency of the input increases, however, the match between the
single-rate equivalent system and the multirate system gets worse. This
makes sense intuitively because the overall response of the hybrid system
must be matched by a lower-rate system. A general rule is that the input
signal frequencies should be no higher than the cutoff frequency of the
slowest rate system.

Another issue is that high-frequency inputs can be completely missed by
the lower-rate system. For example, if a pulse is applied to a hybrid system

x1 T+()

x2 T+()

u T+()

I 0 0
BdB21() Ad BdB22

0 0 I

x1 T �()

x2 T �()

u T �()

=

G Matrix

Φ GeFT=

xK 1+ Φ1xK Φ2uK+=

x x1

x2

=

Chapter 10 Linearization

© National Instruments Corporation 10-11 SystemBuild User Guide

with a continuous subsystem followed by a discrete subsystem, the
continuous subsystem responds to the pulse. However, a single-rate system
can miss the pulse if it occurs between samples. Following this reasoning,
the Kalman-Bertram method is not a good impulse-response matching
method.

The Kalman-Bertram method also can be thought of as a discretization
method using the z−transform with zero-order hold. If you are interested in
matching the frequency response of the multirate and single-rate systems,
the Kalman-Bertram method is not recommended because the response at
higher frequencies is not well matched. For additional resources, refer to
[A80] and [DoFrTa92] in Appendix A, Bibliography.

For linear systems only, multirate lin() results may be verified by
comparing the step response obtained from the multirate lin() results
using the step() function:

sys = lin("model",{keywords})
[t,y] = step(sys)

More generally, one can use any piece-wise constant input sequence (where
the interval length is equal to the BTP) for verification.

Subsystem Method
This method is based on linearization and rate transformation of the
subsystems individually. In order to match the phase shift related to the
sample-and-hold characteristics of the individual subsystem models, filters
are appended. These filters cause additional states to be added. This type of
model is useful for analysis purposes over a bandwidth that includes all
subsystem bandwidths.

There are two choices of rate transformation that are selectable by the
subsys_trf keyword:

• Constant delay rate transformation {subsys_trf=0}

Given a transfer function H1(z1), where z1 corresponds to the forward
shift operator for sampling interval ∆t1, a delay preserving
transformation to a sampling interval ∆t2 = ∆t1/N can be found by
defining H2(z2) = H1(z2

N). The transformed model has N times as many
states as the original one. This leads to frequency folding in the transfer
function. Fortunately, that effect is generally eliminated by the delay
filters that are appended to the transformed subsystem model. The
original subsystem model outputs have an average delay of
(∆t1 – ∆t2)/2 compared to the new one. An important advantage of this

Chapter 10 Linearization

SystemBuild User Guide 10-12 ni.com

method is that this delay is independent of the frequency content of the
input signal and of the model characteristics.

• Impulse invariant rate transformation {subsys_trf=1}

This transformation is a generalization of the well known impulse
invariant transformation from continuous to discrete time. The
transformation of a discrete system to a faster rate can cause problems
for systems with poles on the negative real axis. Such poles are split
into a pair using a perturbed modal decomposition model. The number
of states added is generally much smaller than with the constant delay
method. Unfortunately the average delay compared with the original
subsystem model depends on the system dynamics, which makes this
method less reliable than the constant delay method. Therefore, you
should always validate the result with the original SystemBuild model
or the constant delay method.

There is also a choice of two types of filters (keyword subsys_fil) that
are appended to the subsystems to emulate sample-and-hold delays of the
original subsystems:

• Moving average (MA) {subsys_fil=0}.

The number of filter states required per subsystem output is 2*delay,
where delay is the required delay specified in number of sampling
intervals.

• Auto-regressive (AR) {subsys_fil=1}.

Only one filter state required per subsystem output.

AR is much more efficient than MA but less exact for the purpose of
introducing a constant delay.

The constant delay rate transformation with the MA filter is the default
method. It is the most reliable but can easily lead to an excessive number of
states, whereas the impulse invariant rate transformation with the AR filter
is the most efficient but also the least reliable.

The sampling interval of the resulting model with the constant delay
method is always the greatest common divisor (GCD) of all sampling
intervals, whereas the sampling interval with the impulse invariant method
is the smallest sampling interval of all discrete subsystems. For the impulse
invariant method, however, you can override the sampling interval by
specifying the subsys_dt keyword.

The keywords actiming and cdelay are optional and result in higher
orders of the filters that emulate the subsystem sample-and-hold effects.

Chapter 10 Linearization

© National Instruments Corporation 10-13 SystemBuild User Guide

With the subsystem method, models containing subsystems that cannot be
linearized in explicit form are not allowed. Enabled subsystems are
assumed to be in the enabled state. Triggered subsystems are ignored.

Linearizing Fixed-Point Blocks
Fixed-point block linearization is performed the same way, whether the
model is single-rate or multirate. The parameters are quantized, as
fixed-point requires. Then the linearization is performed in the usual
manner. Refer to Chapter 15, Fixed-Point Arithmetic, for more
information.

© National Instruments Corporation 11-1 SystemBuild User Guide

11
Operating Point Computation

The trim() function accepts unconstrained and constrained inputs,
states, and outputs as initial conditions and computes a steady-state
operating point for a system. In order to obtain meaningful results, the
number of constraints should not exceed the number of unknowns. The
system to be trimmed must have at least one state, but no external inputs
are required.

trim() is especially useful for finding a steady-state operating point
without actually simulating the system. trim() is also used to calculate
the magnitude of the constant inputs required to keep a system at its
steady-state operating point. The system can be continuous or discrete,
and multirate and hybrid systems can be trimmed with this function.

trim() returns the states (x), the inputs (u), and outputs (y), at a
steady-state operating point. If you need to verify that the solution found is
indeed a steady-state operating point, call the simout() function with x,
u values obtained from the trim() solution. The derivative vector xdot
calculated by simout() should match the derivative constraint vector
specified for the trim() problem. Alternatively, you can perform a
simulation using x for the initial conditions and u as constant inputs.
The results of this simulation should match y.

For linear systems, trim() usually converges in one or two iterations. For
nonlinear systems, convergence to the equilibrium may take longer. You
can control the total number of iterations to be performed, as well as the
tolerance criterion for convergence.

Consider the following nonlinear dynamic system:

The trimmed operating point is defined as the state and input values for
which = , where is the required derivative value at the steady-state
operating point.

For the case where = 0, the operating point is an equilibrium point,
characterized in simulation by no transients due to initial conditions.

x· f x u,()=
y g x u,()=

x· x· t x· t

x· t

Chapter 11 Operating Point Computation

SystemBuild User Guide 11-2 ni.com

When trim() is applied to a discrete system, is defined as the
pseudo-rate:

 trim() Syntax
The syntax of the trim() function is as follows:

[xt,ut,yt,yimpt] = trim ("model",{xdt, xdt_float, u0, u_frz,
x0, x_frz, y0, y_frz, yimp0, dx, du, iter, trimtol})

where model specifies the model to be processed and is required.

The following are optional keyword inputs:

xdt State derivative vector at which the system is to be trimmed of
dimension nx by 1. Default = all 0.

xdt_float List of integers specifying the floating (unconstrained)
derivatives. The system is trimmed at zero equilibrium by
default. The constraints on derivatives corresponding to these
are removed from the trim() equations to be solved.
trim() usually detects “free integrators” and informs the
user. In some cases, the trim() solution may improve if
indices of these free integrators are included in xdt_float.
Default = null.

u0 Nominal input vector of dimension nu by 1 or nu by 2.
Default = all 0.

u_frz List of integers specifying inputs to be frozen. Default = null.

x0 Nominal initial state vector. Defaults are taken from the
SystemBuild catalog.

x_frz List of integers specifying states to be frozen. Default = null.

y0 Nominal output vector.

y_frz List of integers specifying outputs to be frozen.
Default = null.

yimp0 Nominal implicit output vector for systems with algebraic
loops.

dx Real (default 0.001). State perturbation vector for
linearization.

x· t

x· t
x k 1+() x k()–

T
------------------------------------=

Chapter 11 Operating Point Computation

© National Instruments Corporation 11-3 SystemBuild User Guide

The outputs are as follows:

If u0 is not specified as an input, it is initialized to zero. If y0 is not
specified, then simout() is used to compute it from x0 and u0. If x0 is
not specified as an input, it is initialized from the SystemBuild catalog
values.

u_frz, x_frz, and y_frz designate components of the external input,
state, and output vectors that are to be held constant. y_frz can be used for
trim() problems where operating point states and their derivatives are
known but the inputs are unknown. Constraining outputs is preferable to
constraining states because the mapping from states to outputs is often not
known to the user (for example, in transfer function blocks). Notice,
however, that for some overly constrained problems, it may not be possible
to satisfy y_frz exactly because output values at the trim() point are
constrained by y = g(xt, ut).

The trim() function uses the lin() funciton to linearize a system.
Therefore the necessary initial conditions and inputs for the operating point
must be specified with the x0 and u0 keywords.

du Real (default 0.001). Input perturbation vector for
linearization.

iter Integer. Number of trim() iterations. trim() continues
improving the solution until either the tolerance criterion is
satisfied (refer to trimtol below) or the maximum number
of iterations specified with iter is exceeded.

trimtol Real (default 100∗eps; eps=machine epsilon). Convergence
criterion for trim() iterations. Convergence is assumed
when the Euclidean norm of the constraint vector xdt (or
[xdt; y] if some outputs are frozen) is less than eps. In
some cases, this value may be too strict, and it may have to be
relaxed.

xt Trimmed state vector

ut Trimmed input vector

yt Trimmed output vector

yimpt Trimmed implicit output vector

Chapter 11 Operating Point Computation

SystemBuild User Guide 11-4 ni.com

After the trimmed state values are computed, they may be inserted as initial
conditions for a subsequent simulation or linearization. If the trimmed
point is indeed a steady-state operating point, the output shows no
transients.

 trim() Algorithm
The trim() function is designed to find the trimmed input and state
values xt, ut, such that the following constraints are satisfied:

yf represents the constrained (“frozen”) components of the output vector.
To describe the algorithm, we use a continuous nonlinear system:

We wish to satisfy the following at the steady-state operating point

subject to xf, uf as specified by the user.

Linearization of the system and output equations yields:

(11-1)

At the operating point, if we set

x· x· t=

y yf=

x· f x u,()=

x· t f x u,()– 0=
yf gf x u,()– 0=

x∂
∂f x f∂

u∂
----- u∆+∆ 0=

x∂
∂g x g∂

u∂
----- u∆+∆ 0=

A
x∂

∂f=

B
u∂

∂f=

C
x∂

∂g=

D
u∂

∂g=

Chapter 11 Operating Point Computation

© National Instruments Corporation 11-5 SystemBuild User Guide

the result is:

(11-2)

The matrices A, B, C, and D are found by linearizing the system with the
lin() function. are obtained by deleting rows and
columns from A, B, C, and D according to floating derivatives and frozen
x, u, and y values.

In order to construct an iterative Newton-Raphson root solving problem,
we rewrite Equation 11-1 and Equation 11-2 as:

(11-3)

The iterations continue until convergence is achieved:

 trim() Behavior

Stability
When a system is unstable, it may still be possible to trim the system at
an unstable equilibrium point. However, this may not correspond to a
steady-state operating point. When simulated, a system diverges from
such trimmed points. To check for stability, inspect the eigenvalues of the
system obtained by linearizing the system at the trimmed operating point.

Free Integrators
The trim() algorithm may have difficulty when trimming systems with
free integrators. Free integrators are dynamic states that do not contribute
to the calculation of state derivatives. In the presence of free integrators,
it may or may not be possible to trim a system exactly.

Ã B̃
C̃ D̃

x∆
u∆

0=

Ã B̃ C̃ and D̃, , ,

Ã B̃
C̃ D̃

xi 1+ xi–

ui 1+ ui–

x· t f xi ui–()–

yfi gf xi ui,()–
=

xi 1+

ui 1+

xi

ui

≅

Chapter 11 Operating Point Computation

SystemBuild User Guide 11-6 ni.com

When trim() detects a free integrator, it reports the index and name of
the state associated with the derivative but does not try to remove the free
integrator.

If the trim() iterations fail to converge, either:

• Some constraints on y can be removed.

• The indices of free integrators reported by the trim() algorithm can
be included in the list xdt_float.

Algebraic Loops
Trimming a system with algebraic loops may require that you obtain
trimmed values for the algebraic loop outputs. These outputs can be
obtained by adding a new term in the output list:

[xt, ut, yt, yimpt] = trim("model", {xdt, xdt_float, u0, u_frz, x0,
x_frz, y0, y_frz, yimp0, dx, du, iter, trimtol, message})

where model is the name of a SuperBlock in the SystemBuild Editor and

The trimmed state and algebraic loop outputs can be inserted as simulation
or linearization initial conditions—for example:

y = sim(..., { x0=xt, yimp0=yimpt})

 trim() Examples

Example 11-1 Simple Linear Model

In this example, we trim a simple linear model called Flat Model. This
system has eleven states, three inputs, and four outputs.

To trim Flat Model, complete the following steps:

1. Copy the model to your working directory:

copyfile "$SYSBLD/examples/f14/f14_2.cat"

2. Load the file.

3. Use the following trim() function:

[xt,ut,yt]=trim("Flat Model",{u0=[2; 2; 2], u_frz=[1, 2, 3]})

The number of unknowns is 11 (only the states are solved for and
inputs are frozen). The number of constraints is 11, as seen from a

yimp0 Nominal implicit output vector for the algebraic loop outputs.

yimpt Trimmed algebraic loop output vector.

Chapter 11 Operating Point Computation

© National Instruments Corporation 11-7 SystemBuild User Guide

simple row count in Equation 11-3, and so the trim problem is
well-posed.

You can verify the results of the trim() operation using the following
commands:

t=[0:10]'; u=2*[ones(t), ones(t), ones(t)];

y=sim("Flat Model",t, u, {x0=xt})

Notice that there are no transients in the output, and the above y matches
the output yt obtained from trim().

Example 11-2 Over-Constrained Simple Linear Model

The following example is over constrained. The trim() function gives
11 unknowns (solving only for states and inputs are frozen), and
11 + 4 = 15 constraints (four outputs are constrained).

[xt,ut,yt]=trim("Flat Model", {u0=[2;2;2], u_frz=[1,2,3],

y0=[10;20;30;10], y_frz=[1,2,3,4]})

For this example, trim() returns a message indicating the size of the
error, which is large, because the problem as it was presented is over
constrained. The solution for xt, ut gives a least-squares solution but cannot
attain zero error.

Example 11-3 Nonlinear Model

The Predator_Prey model provides an example of a nonlinear trim()
problem.

To trim pred_prey, complete the following steps:

1. Copy the model file to your local directory:

copyfile "$SYSBLD/examples/pred_prey/pred_prey.cat"

2. Load the model.

3. Call the trim() function:

[xt,ut,yt]=trim("Predator_Prey",{u0=1, x0=[2;2], u_frz=1, iter=5})

You can verify the steady-state operating point by simulating the system
with the above xt as initial conditions.

Experimenting with different initial conditions reveals that this system has
two equilibrium points at xt = [0;0], [1;0.5].

© National Instruments Corporation 12-1 SystemBuild User Guide

12
Classical Analysis Tools

This chapter describes the user interface to the analysis tools that you can
use from the SuperBlock Editor. These tools provide an easy-to-use
graphical interface for analysis of the current model using the analyze()
function.

The Using the Tools section of this chapter discusses how to use the tools
generally, and the How SystemBuild Proceeds to Analyze Your Model
section outlines what you can expect to see after you invoke the tool. The
remainder of this chapter focuses on the classical analysis tools, which are:

• Open-Loop Frequency Response

• Time Response

• Point-to-Point Frequency Response

• Root Locus

• Parameter Root Locus

Most of these tools linearize the current SuperBlock. The SystemBuild
lin() function performs classical linearization of continuous, discrete
(either single rate or multirate), or hybrid (mixed continuous and discrete).
Procedure SuperBlocks referenced from Condition blocks are linearized as
algebraic. Dynamic blocks in such systems are not taken into account.
Their linearization is assumed to be 0.

Hybrid and multirate systems are automatically linearized using the
multirate linearization method. The syntax of the lin() function is
explained in detail in the MATRIXx Help and in Chapter 10, Linearization.

Chapter 12 Classical Analysis Tools

SystemBuild User Guide 12-2 ni.com

Using the Tools
If a system contains a hierarchy of SuperBlocks, you must perform the
analysis with the top-level SuperBlock open in the SuperBlock Editor
window.

To use a tool, complete the following steps:

1. If you want to use the Time Response, Open-Loop Frequency
Response, Point-to-Point Frequency Response,

2. or Root Locus tool, select an input block and an output block. To
perform a multiple selection, select the input block, and then hold
down the <Ctrl> key and select the output block.

If you want to use the Parameter Root Locus tool, you do not have to
select anything in the model.

Depending upon what you select in the diagram, the appropriate tools
are enabled on the Tools menu.

3. Select the desired tool from the Tools menu.

A dialog box appears. You supply the appropriate parameters, as
explained in the sections for each of the following functions. Click the
Help button on the dialog box for additional information on using the
tool.

Note Whenever you enter a new value in a dialog box field, you must press <Enter> or
<Return> in that field to ensure that the value is read.

How SystemBuild Proceeds to Analyze Your Model
When all the parameters are entered and accepted, the software proceeds as
follows:

1. The system is copied to a reserved SuperBlock named
_Analysis_System.1 This system is modified depending on the
input and output blocks that you selected and whether the mode of
analysis is open-loop or point-to-point.

You can edit the modified SuperBlock, _Analysis_System, and use
it like any other SuperBlock except that you cannot use analysis tools
on it. _Analysis_System is displayed in the catalog listing of
SuperBlocks.

1 The _Analysis_System SuperBlock is intended for your use. For example, you may choose to linearize the SuperBlock
using the lin() function, and then use the A, B, C, and D matrices obtained from linearization for analysis in Xmath.

Chapter 12 Classical Analysis Tools

© National Instruments Corporation 12-3 SystemBuild User Guide

Although the Tools menu functions alter the model by adding extra
inputs and outputs where required around the area of interest, the
analyzed portions remain in the diagram and the catalog. Although the
area of interest may be single rate, if a subsystem with a different rate
is part of the original model, multirate linearization is invoked and may
give unexpected results. If this presents difficulties, copy the area of
interest to a temporary SuperBlock and edit it to remove the unwanted
parts of the model before attempting another analysis. Likewise, if the
model has other dynamic blocks that are not on the signal path of
interest, these dynamics may appear as unobservable and
uncontrollable modes during the analysis.

2. _Analysis_System is analyzed.

3. _Analysis_System is linearized. The operating point is fixed by the
initial conditions entered in dynamic block dialogs and by the external
input entered in the analysis dialog box.

Note The external input has the reserved name sb_uext. This name should not be used
by any user-defined Xmath variables, or they are overwritten.

4. Finally, the appropriate Xmath function is invoked, and the results are
plotted.

You can follow the progress of the function execution by checking for
diagnostic or error messages in the Xmath Commands window.

Open-Loop Frequency Response
As soon as you have selected one or two blocks as the input and output
blocks for the open-loop system, the menu item for open-loop frequency
response is enabled. If you select that menu item, Tools»Open-Loop
Frequency Response, the Frequency Response dialog box opens, as
shown in Figure 12-1.

Chapter 12 Classical Analysis Tools

SystemBuild User Guide 12-4 ni.com

Figure 12-1. Open-Loop Frequency Response Dialog Box

Note The input block is the first block selected and the second block is the output block.
If you select only one block, the block is used for both the input and output block.

The inputs area at the top of the dialog box lists the input channels of the
selected input block. Correspondingly, the outputs area at the top of the
dialog box shows output channels of the selected output block. You can
select one channel each for the open-loop system input and output. This
defines a single-input/single-output (SISO) system on which the selected
frequency analysis is performed.

• The Frequency MIN and Frequency MAX fields allow you to define
the frequency range for the resulting plot.

Chapter 12 Classical Analysis Tools

© National Instruments Corporation 12-5 SystemBuild User Guide

Note Remember to press <Enter> or <Return> every time you edit a value.

• The Number of domain points field defines the number of frequency
values at which the plot is calculated.

• The Input Values for Operating Point Computation region is a table
listing the values of the external inputs with respect to which the
linearization is performed (default values are zero). Use the edit fields
to the right of the list to change the value.

Setting the Pattern option causes SystemBuild to draw constant M and N
contours on the plot. Setting Wrap limits the phase to ±180°. Refer to the
Control Design Module User Guide for further details.

You can perform one of three frequency analyses: Bode, Nyquist, or
Nichols. As soon as you select one of the analysis types in the dialog box,
SystemBuild creates the reserved SuperBlock _Analysis_System, which
contains a copy of the system. Then this system is linearized, and either the
appropriate continuous or discrete Xmath function for Bode, Nyquist, or
Nichols is invoked. A plot opens with the desired analysis result.

You can apply the open-loop frequency response analysis to components of
closed-loop systems as well. In the case of a closed-loop system, the loop
is broken at the input channel that you specify in the Frequency Response
dialog.

Example 12-1 provides an opportunity for you to use the tool.

Example 12-1 Getting a Bode Plot of classical.cat

Complete the following steps to perform an open-loop frequency analysis
on classical.cat:

1. Copy this file to your local directory:

copyfile "$SYSBLD/examples/classical_example/classical.cat"

2. Load the file into SystemBuild, and then display classical 1 in a
SuperBlock Editor, as shown in Figure 12-2.

Chapter 12 Classical Analysis Tools

SystemBuild User Guide 12-6 ni.com

Figure 12-2. Open-Loop classical 1 System Before Editing

3. To obtain the Bode plot of the open-loop Plant transfer function, select
Plant.

In this case, you want to use Plant as both the input and output, so you
select only that block.

4. Select Tools»Open-Loop Frequency Response.

The Open-Loop Frequency Response dialog box appears.

5. Click Bode.

Figure 12-3 shows the resulting plot.

Chapter 12 Classical Analysis Tools

© National Instruments Corporation 12-7 SystemBuild User Guide

Figure 12-3. Open-Loop Bode Plot (Typical)

6. Close the plot window, and upload the model to the Catalog Browser.

The open-loop system that SystemBuild processed is available as
SuperBlock _Analysis_System. An edited version of the
Figure 12-2 system is shown in Figure 12-4.

Figure 12-4. Open-Loop Analysis Model

Chapter 12 Classical Analysis Tools

SystemBuild User Guide 12-8 ni.com

Notice that in Figure 12-4, the original loop is broken at the input to
the plant and replaced by an external input. Therefore,
_Analysis_System is effectively the plant as you wanted to see it.

Time Response
As soon as one or two blocks have been selected as the input and output
blocks for the open-loop system, the Time Response menu item is enabled.
If you select Tools»Time Response, the Step or Impulse Time Response
dialog box opens, as shown in Figure 12-5).

Figure 12-5. Time Response Dialog

Note The block considered as the input block is the first block selected and the second
block as the output block. If you select only one block, that block is used for both the input
and output block.

Chapter 12 Classical Analysis Tools

© National Instruments Corporation 12-9 SystemBuild User Guide

The inputs and outputs areas of the dialog box operate the same as for
Open-Loop Frequency Response.

Note Remember to press <Enter> or <Return> each time you change a value.

The Time MAX field defines the final time for the analysis. The Number
of Points field displays the number of points in time that the response is
calculated. The Input Values for Operating Point Computation field allows
you to input a value for each input to the model and override the default
value of 0. These are the values of the external inputs with respect to which
the linearization is performed.

You can select either step or impulse response, which results in the
modified system to be linearized and the Xmath function for step or
impulse to be invoked. A plot appears with the desired analysis result.

Example 12-2 provides another opportunity to work with the
classical.cat model.

Example 12-2 Getting Step Response Plot of classical.cat

Consider the system shown in Figure 12-2.

To perform a time response analysis on classical.cat, complete the
following steps:

1. Select the Plant block as both input and output.

2. Select Tools»Time Response.

3. Click Step.

The resulting step response is shown in Figure 12-6.

Chapter 12 Classical Analysis Tools

SystemBuild User Guide 12-10 ni.com

Figure 12-6. Step Response Plot

4. Close the plot window, and upload the model to the Catalog Browser.

The open-loop system that SystemBuild processed is available as
SuperBlock _Analysis_System. An edited version of the
Figure 12-2 system is shown in Figure 12-7.

Figure 12-7. Time Response Analysis Model

Chapter 12 Classical Analysis Tools

© National Instruments Corporation 12-11 SystemBuild User Guide

Point-to-Point Frequency Response
A basic SISO feedback loop typically includes three exogenous signals
(refer to [DFT92] in Appendix A, Bibliography). Figure 12-2 incorporates
only one of these three signals, namely the command (or reference) input.
The remaining two exogenous signals, external disturbance and sensor
noise signals, enter the loop as shown in Figure 12-8. This diagram is for
illustrative purposes only.

Example 12-3 Loading classical 2 Into a SuperBlock Editor

To load classical 2 into a SuperBlock Editor, complete the following
steps:

1. If you still do not have classical.cat loaded in your Catalog
Browser, copy this file to your local directory:

copyfile "$SYSBLD/examples/classical_example/classical.cat"

2. Load the file into SystemBuild, and then display classical 2 in a
SuperBlock Editor, as shown in Figure 12-8.

Figure 12-8. Open-Loop classical 2 System Before Editing

In detailed or complicated block diagrams, it may not be convenient to
include these extra exogenous inputs from the outset. Nevertheless, you
may need to examine the transfer function(s) between various points of the
feedback loop without the loop being broken.

For example, you may need to examine the transfer function associated
with the Disturbance signal (Input 1 in Figure 12-8). To illustrate how
this can be done, consider the system in Figure 12-2 again. Suppose that the
disturbance signal to the plant is not already built into the model, as is the
case in Figure 12-2, and you are interested in the transfer function from the

Chapter 12 Classical Analysis Tools

SystemBuild User Guide 12-12 ni.com

disturbance signal at the plant input to the output of the feedback loop.
Refer to Example 12-4.

Example 12-4 Adding a Disturbance Signal to classical 1

To add a disturbance signal to classical 1, complete the following steps:

1. Load classical 1 into a SuperBlock Editor.

2. Select the block where the external input is to be injected.

In this example, the input is to be injected at the input channel of the
Plant block.

3. Select the block from which the output signal is to be taken.

In this example, this is the same block, so there is no need to select
another block.

4. Select Tools»Point to Point Frequency Response.

The Point-To-Point Frequency Response dialog box appears, with
input and output areas that list the input and output channels of the
selected block or blocks, allowing you to select one channel each for
the closed-loop system input and output. In the example, the block is
SISO and therefore the channel selection is automatic.

This selection defines a system wherein all original connections are
left intact except that a signal is injected through an additional
summation block at the specified input port. Zero step inputs are
attached to all the other external inputs, and the output is measured at
the analysis output. Refer to Figure 12-9. This SuperBlock is named
classical 4, and is available in the file you loaded earlier,
classical.cat.

Figure 12-9. Closed-Loop Example for Analysis

Chapter 12 Classical Analysis Tools

© National Instruments Corporation 12-13 SystemBuild User Guide

The fields on the dialog box and the three types of frequency analyses
operate the same as was explained in the Open-Loop Frequency
Response section.

5. Click Bode.

The plot shown in Figure 12-10 appears.

Figure 12-10. Bode Plot of the Point-to-Point Example

Root Locus
Given an open-loop, SISO system, G(s), the Root Locus option of the Tools
menu calculates and plots the roots of the closed-loop system that is
composed of G(s) and a variable, feedback gain K. This amounts to the
calculation of roots of the equation 1 + KG(s) = 0 for a range of values of K.
This range of values is typically specified by the user. The open-loop
system is defined by specifying its input and output, as discussed in the
previous sections.

As soon as you select one or two blocks as the input and output blocks for
the open-loop system, the menu item for root locus is enabled. If you select
Tools»Root Locus, the Root Locus dialog box appears, as shown in
Figure 12-11.

Chapter 12 Classical Analysis Tools

SystemBuild User Guide 12-14 ni.com

Figure 12-11. Root Locus Dialog

Note The block considered as the input block is the first block selected, and the second
block is the output block. If you select only one block, that block is used for both the input
and output block.

The inputs area of the dialog box lists the input channels of the selected
input block, and the outputs area lists the output channels of the
corresponding selected output block. You can select one channel each for
the open-loop system input and output. This defines a SISO system on
which the root locus analysis is performed.

When Pattern is set to Yes, lines of constant damping and constant natural
frequency are drawn on the root locus plot.

Note The root locus() function invoked in this way is the standard Xmath interactive
root locus() function. You might need to rearrange the screen windows to gain access
to the Interactive Root Locus dialog, from which you can change the interactive gain value.
Refer to the MATRIXx Help or the Control Design Module User Guide for further details.

Chapter 12 Classical Analysis Tools

© National Instruments Corporation 12-15 SystemBuild User Guide

The following sections provide several examples using this tool.

Application to a Linear System
Example 12-5 uses the system in Figure 12-2 again.

Example 12-5 Creating a Root Locus of classical 1

To create a root locus plot of classical 1, complete the following steps:

1. Load classical 1 into a SuperBlock Editor.

2. Select the Plant block.

3. Select Tools»Root Locus.

The Root Locus dialog box appears, as shown in Figure 12-11.

4. Accept the defaults, and click Done.

The system shown in Figure 12-4 is created and linearized. The
resulting root locus plot shown in Figure 12-12 appears, along with the
Interactive Root Locus dialog.

Figure 12-12. Root Locus Plot

5. Make some changes in the Interactive Root Locus dialog, and observe
how they affect your plot.

Chapter 12 Classical Analysis Tools

SystemBuild User Guide 12-16 ni.com

Note If your model has other dynamics that are not in the signal path of interest, these
dynamics appear in the root locus plot as unobservable, uncontrollable modes. They do not
affect the root locus of interest, except in the case of a discrete system with uncontrollable
or unobservable dynamics where these dynamics are of a different rate, necessitating
multirate calculations that would influence the root locus calculations.

Application to a Multirate, Nonlinear System
To illustrate some of the hidden steps that are executed for an analysis, let
us consider the multirate, nonlinear system in Example 12-6.

Example 12-6 Creating a Root Locus of a Multirate, Nonlinear System

To create a root locus of a multirate, nonlinear system, complete the
following steps:

1. Copy the model to your local directory by typing the following
command in the Xmath command area:

copyfile "$SYSBLD/examples/classical_example/mws_demo.cat"

2. Load the file in SystemBuild, and open BUILT_MODEL in a
SuperBlock Editor.

3. Select the feedforward compensator, and then select Edit»Make
SuperBlock. Upload the model to the Catalog Browser.

4. Go to the Catalog Browser, and select the new SuperBlock, _makesb.
Select Tools»Transform.

The Transform SuperBlock dialog box opens.

5. In the Transform SuperBlock dialog, make the type discrete, and
specify a Sample Period of 0.01. Select OK.

6. In the editor, select the Gain block (ID 7) as input. Then press
<Ctrl-click> to select the system dynamics block (ID 4) as output.

Chapter 12 Classical Analysis Tools

© National Instruments Corporation 12-17 SystemBuild User Guide

7. Select Tools»Root Locus.

The Root Locus dialog box opens.

8. Click Done.

The Interactive Root Locus dialog, as well as the root locus plot, opens.

9. In the Interactive Root Locus dialog, change X Min to .5, X Max to
1.1, Y min to -.5, Y Max to .5, and the Feedback Loop Gain to 0.7.
Remember to press the <Enter> or <Return> key after entering data in
each field. Click Recompute.

The root locus obtained, which is shown in Figure 12-13, corresponds
to an equivalent single-rate linear system with sample interval T = 0.01
and gain = 0.7. Therefore, the stability properties of the root locus
must be interpreted as for a discrete system. Refer to the Multirate
Linearization section of Chapter 10, Linearization, for more on
multirate linearization.

Figure 12-13. Root Locus Plot of the Built Model

The operating point has an important effect on the linearization of nonlinear
systems. The operating point is defined by the external input, entered in the

Chapter 12 Classical Analysis Tools

SystemBuild User Guide 12-18 ni.com

Tools menu forms, and by the state initial conditions. Refer to the
Operating Points section of Chapter 13, Advanced Simulation, for further
explanation of operating points. The effect of the operating point on a linear
analysis is illustrated in Example 12-7.

Example 12-7 Showing the Effect of the Operating Point on Linear Analysis

To show the effect of the operating point on linear analysis, complete the
following steps:

1. From the Xmath Commands window, load the original
mws_demo.cat model:

load "$SYSBLD/examples/mws_example/mws_demo.cat"

2. Open BUILT_MODEL in a SuperBlock Editor.

3. Select the Gain block (ID 7) as input. Then press <Ctrl-Click> to select
the system dynamics block (ID 4) as output.

4. Select Tools»Root Locus.

The Root Locus dialog box opens.

5. Click Done.

The Interactive Root Locus dialog, as well as the root locus plot, opens.

6. In the Interactive Root Locus dialog, change the root locations
interactively. Notice where the roots are when the Feedback Loop Gain
is 100.

Chapter 12 Classical Analysis Tools

© National Instruments Corporation 12-19 SystemBuild User Guide

7. Make a SuperBlock out of the five blocks connected between the Gain
block and system dynamics (IDs 7, 11, 99, 2, and 4). Select
File»Update.

The new SuperBlock name is the default name, _makesb.

8. To rename _makesb, go to the Catalog Browser, expand the
SuperBlocks hierarchy in the Catalog view, and select the _makesb
SuperBlock. Select Edit»Rename, and name the new SuperBlock
newsb.

Note If you do not rename the SuperBlock, root locus fails.

9. Open newsb in a SuperBlock Editor.

10. In the editor, do a root locus analysis with the same input and output
blocks (IDs 7 and 4), and launch the Root Locus tool. Notice that this
time there is a field to input values for an operating point computation.
Click Done.

11. In the Interactive Root Locus dialog, set the Feedback Loop Gain to
100. Compare the values with those you noted in step 6.

Notice that now when the Feedback Loop Gain = 100, the roots are not
in the same place as the previous root locus plot. The reason is that in
newsb, the extra blocks in the system are removed so that only the path
from the Gain block to system dynamics remains. Therefore, the

Chapter 12 Classical Analysis Tools

SystemBuild User Guide 12-20 ni.com

calculation of the operating point done by the function opoint() is
different.

In the first case, the external input is specified by the step signal, but in
the second case, it is defined by the external input entered in the Root
Locus dialog, with a default of zero. The nonlinear single variable
interpolation block is therefore linearized at a different point—that is,
the equivalent gain for the block is different. Consequently, the
open-loop gain of the system is different, affecting the closed-loop
pole locations on the root locus plot.

Parameter Root Locus
The functionality of the Parameter Root Locus option differs from the Root
Locus option. When you define a SISO system, G(s), the Root Locus
option automatically creates a closed-loop system as described in the Root
Locus section. This assumes that you are interested in using a feedback
gain, K, to create a closed-loop system from G(s). In many situations, you
have already closed the loop and are only interested in the roots of the
specified system when internal parameters, which have to be defined as
%Variables, are changed. Thus, there is no need for closing any loops, and
the parameters are internal. The Parameter Root Locus option provides this
capability—with it you can obtain root loci of nonlinear systems.

Example 12-8 provides an example of parameter root locus applied to a
nonlinear system.

Example 12-8 Using Parameter Root Locus on a Nonlinear System

To use the Parameter Root Locus tool with example1, complete the
following steps:

1. Copy the model to your local directory by typing the following
command in the Xmath command area:

copyfile "$SYSBLD/examples/classical_example/prl.cat"

2. Load the file in SystemBuild, and open example1 in a SuperBlock
Editor.

The nonlinear system is shown in Figure 12-14, where the gains for
Inner_Loop Gain, Outer_Loop Gain, and Channel 1 Feedback Gain
are parameterized.

Note The unorthodox block placement is to enable you to read the text on these blocks in
this document.

Chapter 12 Classical Analysis Tools

© National Instruments Corporation 12-21 SystemBuild User Guide

Figure 12-14. example1

3. Select Tools»Parameter Root Locus.

The Parameter Root Locus option is enabled with no blocks selected.

The Parameter Root Locus dialog box shown in Figure 12-15 appears.
It lists all scalar %Variables referenced in any block residing in the
currently displayed SuperBlock and the hierarchy of SuperBlocks
under it. You can select one %Variable, as well as a range for varying
the parameter and the number of points.

Chapter 12 Classical Analysis Tools

SystemBuild User Guide 12-22 ni.com

Figure 12-15. Parameter Root Locus Dialog

4. Click Done.

The root locus is computed by varying the %Variable from MIN to
MAX with a stepsize of (MAX-MIN)/NPTS and at each value plotting
the real and imaginary parts of the eigenvalues of the linearized
system. The plot is thus parameterized in the %Variable. The
eigenvalues corresponding to the minimum and maximum parameter
value are plotted in a different color. The %Variable is restored to its
original value at the end of the analysis.

Figure 12-16 shows the results.

Chapter 12 Classical Analysis Tools

© National Instruments Corporation 12-23 SystemBuild User Guide

Figure 12-16. Parameter Root Locus Plot of the example1 Diagram

© National Instruments Corporation 13-1 SystemBuild User Guide

13
Advanced Simulation

This chapter discusses a number of advanced simulation topics:

• Explicit versus Implicit Models

• Operating Points

• Inserting Initial Conditions

• Matrix Blocks in the Simulator

• Sim Integration Algorithms

• State Events

Explicit versus Implicit Models
Continuous simulation models can be implicit or explicit:

• A model is explicit when the state derivative can be written as an
explicit function of the state.

The majority of SystemBuild blocks are explicit.

• A model is implicit if it contains implicit blocks and/or algebraic loops.

You can find implicit blocks on the Implicit palette.

Explicit Models
Explicit models are defined by an underlying ordinary differential equation
(ODE) where the state derivative is explicitly computed from the state:

(13-1)

Notice that the external input is not included as one of the arguments on the
right side of the equation. This generally accepted formalism simplifies
without loss of generality. The dependence on the external input is really a
time dependence defined by linear interpolation of the values in the input
matrix as a function of time.

x· t() fe x t() t,()=()

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-2 ni.com

Implicit Models
Implicit models are defined by a residual (which is a function of time), the
state, and the state derivatives:

(13-2)

The solution is defined by setting δ(t) to zero and solving for x(t) and .
This type of equation is generally referred to as a differential-algebraic
equation (DAE) because it may imply non-dynamic or algebraic relations
between elements of the state vector. Note that DAEs are inherently
associated with constraints because they require the residual to be zero.
Also, any ODE can be reformulated as a DAE by defining the residual as
the difference between the left and right sides of the ODE equation.
Conversely, DAEs cannot generally be reformulated as ODEs.

In order to be able to solve the DAE, some additional assumptions have to
be made. For example, the stiff system solver (DASSL) assumes
nonsingularity of the Jacobian, a condition which is often hard to guarantee
and verify. Despite these problems, implicit integrators are important
because they are the only ones that can handle algebraic loops and implicit
blocks correctly.

If a model contains algebraic loops but no implicit blocks, it can be
simulated using both implicit and explicit integration algorithms. The
analyzer issues a warning message indicating that the simulation result is
not reliable when explicit algorithms are used.

Models that contain implicit blocks can only be simulated using implicit
integration algorithms.

Constraints
You can use constraints to prevent the solution from drifting away from any
predefined manifold known for the solution. You can impose constraints
with implicit UCBs, constraint blocks and/or algebraic loops, as shown in
Example 13-6.

δ t() fi x· t() x t() t, ,()=

x· t()

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-3 SystemBuild User Guide

SystemBuild differentiates between two types of constraints: required and
auxiliary.

• Required constraints are defined as an arbitrary set of constraints that
are necessary to solve the DAE such that each variable required to
solve the problem has a corresponding constraint. Any additional
constraints are called auxiliary.

• Auxiliary constraints make a problem over-determined since, generally
speaking, they add more equations than there are variables. The notion
of solvability goes mathematically beyond reasoning based on
numbers of equations versus constraints. For practicality, SystemBuild
ignores these issues, since they are usually irrelevant and add an
unjustifiable degree of complexity.

You distinguish between required and auxiliary constraints because
auxiliary constraints make the Jacobian non-square, requiring different
state update equations than those based on matrix inversion. If auxiliary
constraints are used, the δ vector is partitioned into two segments, which
are referred to as δr (required constraints) and δa (auxiliary constraints).

Simulation State
The simulation state is described by implicit states, explicit states, and
implicit outputs:

(13-3)

The three components have the following meaning:

xi Implicit states, introduced by implicit UCBs or implicit
variable blocks

xe Explicit states, introduced by any other dynamic blocks

yi Implicit outputs, introduced by algebraic loops

Notice that this state vector is an augmentation of the implicit and explicit
state vectors with implicit outputs, as discussed in the Implicit Outputs
section. To save the state of the simulation, you also must save the implicit
outputs.

x
xi

xe

yi

=

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-4 ni.com

Implicit Outputs
Implicit outputs are block outputs in an algebraic loop selected by the
SystemBuild analyzer as the starting point for direct evaluation of the loop
equations. Implicit outputs are different from other outputs in the sense that
the diagram cannot be evaluated without them. They are different from
states in the sense that they can get instantly overwritten during the diagram
evaluation. The methodology depends on the block sorting by the analyzer
and is generally unpredictable. In spite of this nondeterministic behavior,
implicit integration algorithms can compute the numerically correct
solution.

Initialization
Implicit model initialization is a little more complicated than initialization
for explicit models. For implicit models, both states and state derivatives
must be initialized. In order for the simulator to compute the operating
point at the start of the simulation, you must specify whether the search is to
be done over the states or the state derivatives. Both the ImplicitUserCode
block and the ImplicitVariable block have a combo box where you can set
this search mode. If the diagram contains no state derivatives, the search is
done over the states, and vice versa. If you want to bypass the operating
point computation, specify initmode = 4. For more details, refer to the
Operating Points section of Chapter 14, UserCode Blocks.

Examples
These examples illustrate the effect of implicit outputs and give examples
of some of the available implicit blocks.

Example 13-1 Algebraic Loop

A model containing an algebraic loop is shown in Figure 13-1. The effect
of the feedback loop containing the gain block is twofold:

• An implicit output is created after the summation block.

• The first input to the summer evaluates to zero.

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-5 SystemBuild User Guide

Figure 13-1. Algebraic Loop Solver of x**2 = 4

When evaluated, this diagram solves the equation x**2 = 4, resulting in the
answer 2 or –2. You can obtain an answer of –2 (only) with the following
commands:

t = [0:10]';

[,y] = sim("gallop", t, {ialg=6});

y?

Either ialg=6 (DASSL) or ialg=9 (ODAS), produced the desired result.

Note Feeding the output of the Gain block into the DotProduct block avoids singularity of
the Jacobian, making it possible for ODASSL to solve the equation without problems.

There are two disadvantages of solving the equation using this model.

• The analyzer arbitrarily decides the location of the implicit output. You
cannot influence the analyzer decision.

• In order to initialize the implicit output, you must pass yimp0 to the
sim() function. In more complicated situations where there are
several implicit outputs, you need to know the composition of yimp0,
which also depends on the analyzer.

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-6 ni.com

Example 13-2 The Implicit Output Block

In this example, the ImplicitOutput block replaces the implicit output with
an implicit state, allowing you to enter the initial condition in its block
dialog. This change is shown in Figure 13-2.

Figure 13-2. Solving x**2 = 4 Using an ImplicitOutput Block

Because the model now contains an implicit block, it can only be simulated
with implicit integration algorithms.

Example 13-3 The Implicit Variable and Constraint Blocks

The most appropriate way of solving x**2 = 4 is to use a combination of an
ImplicitVariable block and a Constraint block. The ImplicitVariable block
has an output vector consisting of two segments:

• The implicit state vector

• The implicit state derivative vector

For the ImplicitVariable block, the Initialize Mode field determines
whether the search for initial values is done over the states (Frozen states)
or over the derivatives (Frozen derivatives). In this case, the states must be
frozen in order to simulate the diagram. The initial value for the derivative
cannot be zero because this leads to a singular problem. Any nonzero value
will work.

For the ImplicitConstraint block, the Constraint Type field specifies
whether the constraint type is Required or Auxiliary. Since the diagram has
an equal number of implicit variables and constraints, you can assume the
constraint in this diagram is required.

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-7 SystemBuild User Guide

Figure 13-3. Solving x**2 = 4 Using ImplicitVariable and ImplicitConstraint Blocks

Example 13-4 An Exact PID Controller

A more useful example is the use of the ImplicitVariable and
ImplicitConstraint blocks to simulate an exact PID controller, as shown
in Figure 13-4.

Figure 13-4. An Exact PID Controller

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-8 ni.com

For the state derivative output of the ImplicitVariable block to represent the
derivative of the input, the constraint is imposed so that its state output is
equal to the external input. The commands used to simulate this system and
plot the output are:

t = [0:10000]'/1500;

[,y] = sim("imppid", t, sin(t.^3), {ialg=6});

plot(t, y)

Figure 13-5 compares this output with the output of the PID Controller
block on the dynamic palette using the default parameters.

Figure 13-5. Comparison of Exact versus Approximate PID Controllers.

Note that the comparison is done over frequencies far beyond where the
derivative approximation of the (explicit) PID block is valid. The PID block
performs much better if the default parameter tau = 0.1 is replaced with
0.01 instead.

Example 13-5 The Inverted Pendulum

For this example, refer to Chapter 15, Fixed-Point Arithmetic, where an
inverted pendulum example is used to illustrate ImplicitUserCode block
capabilities. This example also can be simulated using ImplicitVariable and
ImplicitConstraint blocks, so that a UCB is not required. An interesting
aspect of this example is that it can be simulated under a variety of

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-9 SystemBuild User Guide

conditions, among which are the cases of one or two auxiliary constraints.
You can find the implicit block version of the inverted pendulum example
in SYSBLD/examples/pend_imp_no_iucb. Load the catalog and run
the MathScript found in that directory.

Operating Points
The operating point for each subsystem must be calculated at the beginning
of every simulation for all linearizations and for all simout()
invocations. The objective of an operating point calculation is to determine
consistent values for all states, state derivatives, block outputs, and implicit
algebraic loop variables. The calculation of the operating point is
influenced by the values of the absolute and relative tolerances, as
discussed in the Absolute and Relative Tolerances section.

The following sections discuss the methods for finding the operating point.

Continuous Subsystem
The operating point for a continuous subsystem is found by evaluating
all continuous block outputs based upon the system initial states and inputs.
If the system contains algebraic loops or implicit states (through the
ImplicitUserCode block), the operating point is found by first applying a
Newton-Raphson root solver. Then the other continuous block outputs are
computed based on the algebraic loop outputs, implicit state values,
external input values, and initial state values. Because the root solver finds
a steady-state value for the algebraic loop outputs, initial transients in
simulation due to an incorrect operating point do not occur.

If algebraic loop initial conditions are specified with the yimp0 keyword,
the operating point computation for the algebraic loops utilizes the yimp0
values as initial conditions for the Newton-Raphson solver.1

Discrete Subsystems
Several levels of initialization are available for discrete subsystems, which
you may select using the initmode keyword. By default, initialization is
performed at the initmode = 3 level.

The lowest level, corresponding to initmode = 0, sets all block output
values for each subsystem to .

1 Notice that operating point computations for implicit states, as well as algebraic loops, are performed only for continuous
subsystems.

ε–

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-10 ni.com

At initmode = 1, after all outputs are set to , outputs are computed
for discrete subsystems that do not have enable or trigger flags. The
computations are based on the initial states and inputs.

At initmode = 2, after the two lower levels of initialization described
above are performed, outputs are computed for discrete subsystems that are
enabled or triggered and “active” because their enabling or triggering
signals evaluate to TRUE. The computations are based on the initial states
and inputs.

At initmode = 3, the initialization is the same as initmode = 2, except
that there is no sample and hold between subsystems.

Using initmode = 4 disables the operating point computation performed
at the beginning of the simulation. Note that with initmode = 4,
consistent initial conditions have to be supplied for algebraic loop
variables, if any, using the keyword yimp0. If this is not done, the implicit
variables may have incorrect values at initialization time.

The order in which subsystems are executed is determined by their relative
priorities. Subsystems with shorter sample intervals are executed before
subsystems with longer sample intervals.

The initialization procedure may fail in the event that a high priority
subsystem is dependent on the output of a low priority subsystem. In some
cases, you can avoid the problem by setting initmode = 0, which may
result in a different initial subsystem execution order. The simulation
scheduler considers other attributes that affect timing (initial time skew),
which the initialization procedure does not. In extreme situations, you may
need to modify or redesign your model to be insensitive to the bounds of
values communicated between subsystems.

Notice that code generated using AutoCode does not contain initialization
procedures, such as those in the simulator. As a result, generated code
behavior is similar to the case where initmode = 0.

Note Avoid algebraic loops in discrete systems.

If a discrete subsystem contains algebraic loops, a computational delay
occurs because some block outputs are used in computations before
they are calculated during each time interval. This computational delay
represents a pseudo-dynamic, which may produce non-steady transients
in the simulation results.

ε–

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-11 SystemBuild User Guide

Inserting Initial Conditions
The sim(), simout(), and lin() functions allow you to set initial
conditions for dynamic blocks residing in the analyzed system, overriding
the initial conditions defined in the individual block forms of the dynamic
blocks. This allows you to determine quickly the effect of the initial
operating point on a subsequent simulation or linearization.

You can supply x0, xd0, and yimp0 values as optional keywords to the
sim(), simout(), and lin() functions, which changes the operating
point. These keywords insert initial dynamic state values (x0), initial state
derivatives for ImplicitUserCode blocks (xd0), and initial algebraic loop
output values (yimp0).

If any of the initial condition options are set, the simulation data bus is
loaded with the user-furnished vector. This action only initializes the
run-time tables for the current execution of sim(), simout(), or
lin(). It does not overwrite the initial conditions that are stored on a
block-by-block basis in the SystemBuild catalog. You can change the
catalog values by editing the block diagram only.

For the syntax and method of operation of the sim(), simout(), and
lin() initial condition features, refer to the MATRIXx Help.

States associated with the Padé approximation of continuous delay blocks
cannot be accessed by the x0 keyword under sim(). These states are
initialized to zero at the start of a sim() or lin() unless the sim() is
being resumed. Upon resumption of a simulation, the Padé states revert to
the values they had at the end of the last simulation.

The simulator x0 initial condition option does not allow initialization of
memory states, which include state transition diagram (STD) states and
DataStore initial conditions. These initial conditions are values stored in the
SystemBuild catalog except when a sim() is resumed, in which case the
memory states revert to the values they had at the end of the last sim().
The analyze() function only lists the states that sim() insertion can
access and does not include the memory states.

SystemBuild allows you to specify initial outputs for the transfer function
blocks, NumDen, PoleZero, and ComplexPoleZero through their block
dialogs. Using the internal state-space representations of these blocks,
SystemBuild assigns appropriate initial conditions in these blocks to
produce the desired initial outputs. However, this mapping is not

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-12 ni.com

necessarily unique and is not visible to the user. Therefore, initialization of
these states should be used with caution.

Also, to be consistent with the continuous case, SystemBuild initializes
discrete integrator blocks at the integrator output point rather than at the
discrete delay output. Thus, as shown in Figure 13-6, if the initial condition
x0 is defined in the block parameter dialog, it is applied at the output of the
integrator. By contrast, the sim() x0 keyword option initializes the
integrator state, .

Figure 13-6. 1/s Substitution in Discrete Integrator

Matrix Blocks in the Simulator
While the matrix blocks carry out well-defined matrix-theoretic functions
on their inputs, there may be a question as to what algorithm(s) they employ
and what error bounds they should be expected to obey. The Constant and
MatrixTranpose blocks are simple and introduce no error. The ScalarGain
block uses sequential scalar multiplication. The MatrixMultiply,
LeftMultiply, and RightMultiply blocks are implemented using repeated
dot products. The multiplications might introduce some error as a
consequence of the floating-point or fixed-point multiplications being
carried out. Refer to the Multiplication section of Chapter 15, Fixed-Point
Arithmetic.

This leaves us with the MatrixInverse, MatLeftDivide, and MatRightDivide
blocks that compute 1/A or solve AX=B or XA=B for the unknown X. These
blocks involve complicated algorithms that might produce a large relative
error, depending upon the input. In simulation, these blocks are
implemented using the Gaussian elimination algorithm. This algorithm
behavior is well known. You can make definitive statements about how
much error the solution X or the inverse 1/A contains, thanks to the
reciprocal conditioning number, which is generated by the standard
LINPACK implementation of Gaussian elimination. The simulator halts in
a MatrixInverse, MatLeftDivide, or MatRightDivide block if the reciprocal
condition number goes exactly to zero. This indicates that it is impossible
to invert or divide by the matrix in a meaningful manner.

x̂

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-13 SystemBuild User Guide

Sim Integration Algorithms
Dynamic models created in SystemBuild can be broadly categorized as
follows:

• Continuous

• Discrete

• Hybrid (a combination of continuous and discrete subsystems)

Given user-defined initial conditions and input vector, the procedure of
simulating the SystemBuild model or obtaining a sequence of solutions to
the system equations is fairly straightforward for discrete systems. Starting
from the given initial conditions, the discrete state equations are iterated
until the specified final time.

Finding a numerical solution for continuous and hybrid systems, on the
other hand, requires a proper method of approximation. The purpose of
an integration algorithm or differential equation solver is to calculate an
accurate approximation to the exact solution of the differential equation.
Then the solution is “marched forward” from a starting time and a given set
of initial conditions.

Since all continuous integration algorithms are inherently approximations,
there are a number of important points to consider in selecting a proper
method: computational efficiency, truncation and round-off errors,
accuracy and reliability of the solution, and stability of the integration
algorithm. This section discusses these issues and the advantages and
disadvantages of each method included in the National Instruments
repertoire of integration algorithms. Hints and recommendations for
choosing suitable methods for various types of models are also provided.

These five terms are used in the following descriptions:

• T—Current time

• DT—Time step

• ODE—Ordinary differential equation

• DAE—Differential-algebraic equation

• ODAE—Over-determined differential-algebraic equation

Integration methods can be divided into four classes: one-step,
multi fixed-step, variable-step, and stiff system solvers.

You can find a number of references for integration algorithms in
Appendix A, Bibliography.

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-14 ni.com

Comparing Integration Algorithms
The following list enumerates the supported integration algorithms.
The numbers correspond to the selection indices used in Xmath and
SystemBuild to specify an algorithm. The abbreviations in parentheses
are also accepted by SystemBuild.

• Euler’s method (euler)

• Second-order Runge-Kutta (RK2)

• Fourth-order Runge-Kutta (RK4)

• Fixed-step Kutta-Merson (FKM)

• Variable-step Kutta-Merson (VKM)

• Differential-algebraic stiff system solver (DASSL)

• Variable-step Adams-Bashforth-Moulton (ABM)

• QuickSim (QSIM)

• Over-determined differential-algebraic stiff system solver (ODAS)

• Gear’s method (GEARS)

The default integration algorithm is 5 (Variable-step Kutta-Merson). You
can set the algorithm globally using the command:

SETSBDEFAULT,{ialg=algnumber}

where ialgnumber is taken from the list above.

You also can determine the current default number using the command:

SHOWSBDEFAULT

To set the integration algorithm for a given simulation, use the Simulation
dialog box by selecting Tools»Simulate from a SystemBuild Editor, or
supply the keyword in the sim() function call:

y = sim(model,t,u,{ialg = algnumber})

Overview of the Algorithms
SystemBuild currently provides nine different integration algorithms.
For numerically well-conditioned and non-stiff problems, you can expect
almost any of the algorithms to yield reliable answers, although the
execution times vary.

The process of integrating a system model is conceptually based on
discretizing the differential equations that represent the model. That is,

= f(x, t) is replaced by a difference equation approximating the x·

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-15 SystemBuild User Guide

underlying continuous differential equation up to a certain order. The
continuous variables x and t are replaced by their discrete equivalents xn and
tn, while is replaced by ∆x/∆t. Implementing this procedure yields Euler’s
method.

Euler Integration Method
Euler integration is an explicit, first-order method with one function
evaluation per step.

(13-4)

Notice that the stepsize, h, is taken from the time vector that you supply.

This method is equivalent to approximating the area under the solution
curve with a series of rectangles, as shown in Figure 13-7.

Figure 13-7. Forward Euler Integration

Euler’s method is computationally inexpensive, but in practical
applications it has a major drawback. As shown in the equation, this method
corresponds to a simple linear extrapolation with a local truncation error of
O(h2). Therefore, h must be made very small to obtain reasonable accuracy.
Unfortunately, reducing the stepsize increases the effect of round-off errors
and compromises the computational accuracy and speed.

x·

xn 1+ xn hf xn tn,()+=

where h tn 1+ tn–=

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-16 ni.com

Second Order Runge-Kutta (Modified Euler) Method
This method requires two function evaluations per step, using the following
equations:

(13-5)

The second-order Runge-Kutta method improves on the accuracy of the
Euler method by fitting trapezoids under the solution curve instead of
rectangles, as shown in Figure 13-8. The local truncation error is O(h3).

Figure 13-8. Second-Order Runge-Kutta Integration

Fourth-Order Runge-Kutta Method
The fourth-order Runge-Kutta integration is an explicit method with four
function evaluations per step.

(13-6)

The fourth-order Runge-Kutta method has a truncation error of O(h5). This
is a suitable method when not much is known about the nature of the
problem or the solution. Although this algorithm has proven reliable for

k1 hf xn tn,()=

k2 hf xn k1 tn h+,+()=

xn 1+ xn
k1 k2+

2
----------------+=

k1 hf xn tn,()=

k2 hf xn
k1

2
---- tn

h
2
---+,+

 =

k3 hf xn
k2

2
---- tn

h
2
---+,+

 =

k4 hf xn k3 tn h+,+()=

xn 1+ xn
k1 2k2 k4+ +

6
-------------------------------+=

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-17 SystemBuild User Guide

many types of problems and is widely used, computationally it is not
among the most efficient methods because it does not have any stepsize
control or order adjustments.

Fixed-Step Kutta-Merson Method
The fixed-step Kutta-Merson method improves on the fourth-order
Runge-Kutta method by adding a fifth evaluation step. This method is more
accurate than the fourth-order Runge-Kutta algorithm with a slight
trade-off in computational speed.

It is implemented with the following equations:

(13-7)

Variable-Step Kutta-Merson Method
As shown in reference [F62] in Appendix A, Bibliography, the difference
between terms and xn+1 in the fixed Kutta-Merson method shown above
yields an accurate estimate of the local truncation error.

The variable-step Kutta-Merson method uses this information to adjust the
integration step. The equations are identical to the fixed Kutta-Merson
method with additional computations to decide on the stepsize.

The local error is computed as:

(13-8)

k1 hf xn tn,()=

k2 hf xn
k1

3
---- tn

h
3
---+,+

 =

k3 hf x
k2 k1+

6
---------------- tn

h
3
---+,+

 =

k4 hf xn
3k3 k1+

6
------------------- tn

h
2
---+,+

 =

x̃ xn
4k4 3k3 k1+ +

2
----------------------------------+=

k5 hf x̃ tn h+,()=

xn 1+ xn
k5 4k4 k1+ +

6
-------------------------------+=

x̃

ERR
x̃ xn 1+–

5
--------------------=

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-18 ni.com

The maximum stepsize is limited by the time increment tn+1 – tn or the value
of the keyword dtmax. Because of its accuracy, reliability, moderately
efficient speed, and its successful performance in a wide range of problems,
the variable-step Kutta-Merson method has been chosen as the default
integration algorithm in SystemBuild.

Stiff System Solver
Two types of problems are usually difficult or impossible to solve with the
conventional integration algorithms.

• Stiff systems, which have both very fast and very slow dynamics

• Differential-algebraic equations (DAEs)

SystemBuild has an implicit stiff system solver, DASSL, that can handle
both types of problems. In stiff systems, conventional algorithms are not
able to capture both the fast and the slow dynamics present in the same
system.

DAEs occur when the SystemBuild model results in an implicit
system—a system with algebraic loops or ImplicitUserCode blocks.
The simulator analyzer detects algebraic loops and informs you of their
existence with the message There are algebraic loops in the system. If you
attempt to solve such a system with one of the explicit methods, a delay is
automatically added to the model to resolve the algebraic loop. When such
a system is analyzed, SystemBuild provides a message indicating the
location of the delay to be inserted. This may not always be desirable
because you do not have control over where the delay is inserted.
Additionally, if the loop gain is greater than unity, the system becomes
unstable.

The implicit stiff system solver applies a Newton-Raphson solver at each
time step and attempts to find an operating point consistent with the
user-supplied initial conditions. This process succeeds in most instances.
If an operating point cannot be found, however, this means that one of the
following is true:

• Either the problem or the given initial conditions are ill-posed
(physically unrealizable).

• The true solution cannot be reached from the current estimate of its
value.

 DASSL presents one of the following messages when this occurs:

DASSL-- AT TIME (=...) AND STEPSIZE H (=...) THE ERROR TEST FAILED REPEATEDLY

OR WITH ABS(H) = HMIN.

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-19 SystemBuild User Guide

DASSL-- AT TIME (=...) AND STEPSIZE H (=...) THE CORRECTOR FAILED TO CONVERGE

REPEATEDLY OR WITH ABS(H) = HMIN.

DASSL-- AT TIME (=...) AND STEPSIZE H (=...) THE ITERATION MATRIX IS SINGULAR.

In such cases, you should inspect the SystemBuild model and the initial
conditions carefully to locate inconsistencies or errors in the model.

DAEs usually arise in systems of equations resulting from dynamic
analysis of mechanical systems. Generally, these types of models are a
mixture of nonlinear algebraic and differential equations, and they are
numerically stiff. A system of DAEs has the form:

(13-9)

The equations are numerically solved as follows:

1. The last converged value of the solution xn is used as an initial guess at
the current time point tn+1.

2. is approximated by a backward differentiation formula of order up
to 5. The approximation is substituted for every occurrence of to
yield a nonlinear algebraic equation.

The nonlinear algebraic equation is solved by a Newton-Raphson
iteration method. This method computes a Jacobian of the form:

(13-10)

where the constant c is determined by the backward differentiation
formula. The Newton-Raphson iteration equation

(13-11)

is solved at t = tn+1 using the Jacobian calculated above, approximated
by the backward differentiation formula, and initial guess computed
from a predictor polynomial that fits the past solution curve. If the
Jacobian is not invertible, the algorithm fails.

The algorithm in SystemBuild is based on the DASSL stiff system solver
developed by Linda Petzold at Sandia National Laboratories. The Selecting
an Integration Algorithm section of Chapter 8, Simulator Basics, discusses
the types of systems for which the implicit stiff system solver is suitable.

g x· x t, ,() 0;=

x· t0() x·0=

x t0() x0=

x·
x·

J
x∂

∂g c
x·∂

∂g
+=

xn
k 1+ xn

k J xn
k()

1–
g x·n

k xn
k un, ,()–=

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-20 ni.com

Also, refer to the Computing the Maximum Integration Stepsize in
Variable-Step Integration Algorithms section of this chapter for a
discussion of stepsize computations.

Variable-Step Adams-Bashforth-Moulton Method
The Adams-Moulton method is implemented with a variable-step,
variable-order algorithm. Notice that variable-step refers to the time step,
while variable-order pertains to the order of the polynomial that is fitted to
the solution curve of the differential equation. Since it generally requires
only two function evaluations per time step—one for predictor, one for
corrector—the execution time is usually faster than other algorithms,
except Euler’s method, which requires only one function evaluation.

The variable-step Adams-Moulton method is especially suitable for
smoother problems with continuous higher derivatives because it uses the
information from the higher derivatives. The Adams-Bashforth explicit
method is used as a predictor, and the Adams-Moulton implicit method is
used as the corrector step.

The Adams-Bashforth Predictor step is computed as:

(13-12)

f is the differential equation evaluated at step n:

(13-13)

The Adams-Moulton Corrector step is computed as:

(13-14)

In the above equation is the differential equation computed at step
n + 1 using from the predictor step. As before, h = tn+1 – tn. The
solution is started at the beginning of the simulation with a second-order
Runge-Kutta algorithm. The local truncation error of this method is O(h5).
A discussion of how the stepsize is adjusted in the variable-step
Adams-Moulton algorithm is presented in the Computing the Maximum
Integration Stepsize in Variable-Step Integration Algorithms section.

xn 1+ xn
h 55fn 59fn 1– 37fn 2– 9fn 3––+ +()

24
--+=

fn x·n f xn tn,()= =

xn 1+ xn
h 9fn 1+ 19fn 5fn 1– fn 2–+ + +()

24
---+=

fn 1+

xn 1+

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-21 SystemBuild User Guide

QuickSim Method
Explicit fixed-step integration algorithms are inefficient for numerically
solving stiff differential equations because the stability of the method
depends on the smallest time constant. QuickSim is an explicit, A-stable,
fixed-step integration algorithm that is more efficient and has good
accuracy for linear or nearly linear systems.

Given = f(x(t), u(t)) with initial condition x(tk) = xk, a Taylor series
expansion for f(x,u) around x(tk), u(tk) is obtained:

(13-15)

Defining

you obtain

(13-16)

and solving for xk+1

(13-17)

The method is A-stable, with the same stability properties as trapezoidal
integration.

x·

x· f x u,() f x tk() u tk(),()
x∂

∂f
x tk() u tk(),

x x tk()–()+≈=

u∂

∂f
x tk() u tk(),

u u tk()–() h.o.t.++

B ∂f
∂u

x tk() u tk(),
=

xk 1+ x tk 1+()=

xk x tk()=

h tk 1+ tk–=

∆u t() u t() u tk()–=

A ∂f
∂x

x tk() u tk(),
=

x· k 1+ Axk 1+ f xk uk,() B∆u tk 1+()+ += Axk–

xk 1+ xk eA h τ–() f xk uk,() B∆u τ()+[]dτ

0

h

∫+=

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-22 ni.com

To implement the algorithm, a secant approximation of ∆u is used:

(13-18)

Substituting, you obtain:

(13-19)

The final form of the algorithm is:

(13-20)

where I1 and I2 are the two integrals above. These integrals are
precomputed at the beginning of the simulation.

The QuickSim method has a local truncation error that is O(h2). Let the
actual solution at time tk be x(tk) and the computed solution be xk. Assume
that x(tk) = xk and write expressions for x(tk+1) and xk+1:

(13-21)

and

(13-22)

Therefore

∆u t()
uk 1+ uk–

h
---------------------- t mkt≡=

xk 1+ xk eA h τ–()f xk uk,()dτ eA h τ–()

0

h

∫+ Bmkτdτ

0

h

∫+=

xk 1+ xk I1f xk uk,() I2mk+ +=

x tk 1+() x tk() x· tk()h+=

xk f xk uk,()h+=

xk 1+ xk eA h t–() f xk uk,() Bmτ+[]dτ

0

h

∫+=

xk I A h τ–() A2 h τ–()2

2!
------------------------- …+ + + f xk uk,() Bmτ+[]dτ

0

h

∫+=

xk f xk uk,()h 1
2
---Ah2 h.o.t.+ + +=

xk x tk 1+()– O h2()=

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-23 SystemBuild User Guide

Over-Determined Differential Algebraic System
Solver
The over-determined differential algebraic system solver (ODASSL) is
useful in solving DAEs or ODEs with constraints (problems with more
equations than state variables). All continuous dynamic systems in
SystemBuild are in ODE form. An ImplicitUserCode block (UCB) is
provided to enable you to incorporate DAEs into SystemBuild. The
Implicit UCB also allows constraints to be defined. Refer to the Implicit
UCBs section of Chapter 14, UserCode Blocks.

The equations of motion for multi-body dynamics often result in systems
of differential-algebraic equations. These DAEs may sometimes possess
additional constraints that the physical system must satisfy. In some
cases, these equations can be reduced to explicit form with algebraic
manipulations. However, reduction by analytical or numerical methods
may require strong simplifications or serious analytical and numerical
difficulties. For such problems, formulation and numerical solution of
the equations of motion in the DAE or over-determined DAE form offers
the most convenient approach.

Consider the implicit differential equation (IDE):

(13-23)

The system has index 0 if and only if is not singular. Notice that this
means that the equation can be (locally) transformed into an explicit form

 = f2(x,t) without any differentiations. If at least one differentiation of the
IDE is required to transform the DAE into explicit form, then the DAE is
said to have index 1. In general, an index k DAE requires k differentiations
to transform it into explicit form.

In order for SystemBuild to solve a DAE with DASSL, ODASSL, or
GEARS (ialg options 6, 9, and 10, respectively), the DAE must have an
index of 0 or 1 because these algorithms are not designed to handle systems
of index greater than 1. In particular, DASSL and ODASSL fail if the
Jacobian is singular:

(13-24)

Refer to the Operating Points section of Chapter 14, UserCode Blocks, for
information concerning how to use simout() for a workaround when the
operating point computation fails due to a singularity of the Jacobian.

f x· x t, ,() 0=

∂f ∂x·⁄

x·

J
x∂

∂f c
x·∂

∂f
+=

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-24 ni.com

For a DAE defined using the implicit UCB, the initial conditions and
x(t0) must be consistent when a simulation is started. They must satisfy the
following equation:

(13-25)

Otherwise the algorithms might fail when the integration process is started.

In the same way, any constraint equations that may be part of the implicit
UCB should also be satisfied by the initial conditions:

(13-26)

When using ODASSL, SystemBuild first calculates the rank of the matrix
. If there are derivatives that do not explicitly appear in the

equations, then the equations that are associated with the variables are
de-emphasized in the local error calculations. This is usually encountered
when Lagrange multipliers are used to formulate the equations of motion
for a dynamic system. For an example of this procedure, refer to
Example 13-6.

The technique used by ODASSL in incorporating the constraints into the
DAE is numerically equivalent to the Gear stabilization technique. If a
DAE is integrated without its constraints, the solution tends to “drift away”
from the correct answer. The constraints act as corrections that stabilize the
solution.

Using ODAEs in Multibody System Dynamics
The most common type of DAEs or ODAEs appear in multibody system
dynamics, such as vehicles, satellites, and robots. Typically, the DAEs
obtained from the Lagrangian formulation yield the following equations of
motion for holonomic systems:

 (13-27)

where

 p represents generalized position variables

 v represents generalized velocity variables

x· t0()

f x· t0() x t0() u t0(),,() 0=

fc x· t0() x t0() u t0(),,() 0=

∂f ∂x·⁄

p· v=

M p()v f p v u, ,()
p∂

∂ gp p()Tλ–=

0 gp p()=

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-25 SystemBuild User Guide

Differentiating these equations shows that the DAE in Equation 13-27 has
an index of 3. In order to successfully solve this system in SystemBuild, an
index 1 formulation must be obtained. Higher index formulations may fail
during integration.

Since the constraint gp(p) is a function of positions, it can be differentiated
to obtain constraints on velocity and acceleration:

(13-28)

Possible Formulations for Holonomic Systems
Three types of formulations are possible with holonomic systems.
The most reliable numerical results are usually obtained from the Index 1
Formulation with Two Constraints example.

Unconstrained DAE Formulations

Index 3 Formulation

(13-29)

There are np + nv + nl states and the same number of equations.

Index 2 Formulation
Instead of 0 = gp(p), use the constraint 0 = gv(p,v).

Index 1 formulation:
Instead of 0 = gp(p), use the constraint 0 = ga(p,v,)

M is the inertia matrix

 f is the function of Coriolis, centrifugal, and gravitational forces and
external inputs, u

gp represents position constraints

 λ represents the generalized constraint forces, also called Lagrange
multipliers

gv p v,() g· p p() 0= =

ga p v v·, ,() g· v p v,() 0= =

0 p· v–=

0 M p()v· f p v u, ,()–
p∂

∂ gp p()Tλ+=

0 gp p()=

v·

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-26 ni.com

Index 2 Formulation with One Constraint

DAEs

(13-30)

Constraints

0 = gp(p) (13-31)

Index 1 Formulation with Two Constraints

DAEs

(13-32)

Constraints

(13-33)

Example of a Holonomic System
The formulations in the previous section are demonstrated in
Equation 13-6.

0 M p()v· f p v u, ,()–
p∂

∂ gp p()Tλ+=

0 p· v–=

0 gv p v,()=

0 M p()v· f p v u, ,()–
p∂

∂ gp p()Tλ+=

0 p· v–=

0 ga p v v·, ,()=

0 gv p v,()=

0 gp p()=

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-27 SystemBuild User Guide

Example 13-6 Pendulum Example

A simple pendulum is illustrated in Figure 13-9.

Figure 13-9. Pendulum Example Diagram

The pendulum is connected to ground using a pivot. It is assumed to have
mass m concentrated at the endpoint with link l having zero mass. An input
torque u excites the motion applied at the pivot point. The equation of
motion, using the generalized coordinate θ, is an ODE:

(13-34)

For purposes of illustration, the equations of motion are derived using the
coordinates x and y. The pendulum oscillates on a circle of radius l.
Therefore, the position constraint is:

(13-35)

where

(13-36)

The above set of equations constitutes an index–3 unconstrained
formulation.

θ
g
l
--- θsin u+=

..

gp
x2 y2 l2–+

2
-------------------------- 0==

my·· x
l2
---u– mg– yλ–=

mx·· y
l2
---– xλ–=

0 1
2
--- x2 y2 l2–+()=

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-28 ni.com

For index–2 and index–1 formulations, use the velocity constraint,

(13-37)

and the acceleration constraint,

(13-38)

in place of the position constraint above.

Thus, an index–1, two-constraint formulation of this problem would be as
follows:

Then

This example is coded as an implicit UCB in the SystemBuild examples
directory.

Let

(External input was taken to be
zero in this example.)

(13-39)

DAE

(with algebraic level
constraints)

Velocity level constraint:

Position level constraint:

(13-40)

gv g· p xx· yy·+ 0= = =

ga g· v xx·· x·2 yy·· y· 2+ + + 0= = =

x

y

x·

y
·

λ

x1

x2

x3

x4

x5

=

x·1 x3– 0=

x·2 x4– 0=

mx·3 x1x5+ 0=

x1x·3 x3
2 x2x·4 x4

2+ + + 0=

mx·4 x2x5 mg+ + 0=

x1x3 x2x4+ 0=
1
2
--- x1

2 x2
2 l2–+() 0=

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-29 SystemBuild User Guide

To run the pendulum example, complete the following steps:

1. From the Xmath command area, copy the files from the examples
directory to your current directory:

copyfile "$SYSBLD/examples/pendulum_imp/*"

2. In the Xmath command area, type:

execute file = "pend_imp.ms"

This command loads and simulates the implicit UCB. The script
prompts you interactively.

Gear’s Method
Most backward difference formulations (BDF), for example, DASSL and
ODASSL, are based on Gear’s method. The original algorithm, DFASUB,
was developed at the University of Illinois at Urbana-Champaign (refer to
[BG73] in Appendix A, Bibliography). Gear’s method is a variable-step,
variable-order algorithm and uses a polynomial-based predictor followed
by a Newton-based correction at every step, just like (O)DASSL. It was
designed to handle a mixture of ordinary differential equations, nonlinear
equations, and linear equations.

In the National Instruments implementation of Gear’s method, the
dedicated linear equation handling in the original implementation has been
omitted. Linear equations are handled by the general nonlinear equation
solver. In addition, a least-squares extension of the Newton corrector has
been implemented to make the algorithm suitable for over-determined
systems. Gear’s method is a good choice for implicit systems and is a good
alternative where ODASSL fails.

The main differences between Gear’s method and (O)DASSL are:

• (O)DASSL bases its polynomial order choice on stability, whereas
Gear’s uses the largest possible step size as a criterion to determine the
order.

• (O)DASSL uses internal logic to determine when re-evaluation
of the Jacobian is required, whereas Gear’s method re-evaluates the
Jacobian at every time step. Since computation of the Jacobian is a
CPU-intensive operation, (O)DASSL runs several times faster than
Gear’s method. Conversely, Gear’s Jacobian is more accurate.

• ODASSL imposes any auxiliary constraints—that is, any equations
that make the system over-determined—in an exact manner. Gear’s
method imposes them with a weighting function that is implicitly
determined by the least-squares enhancement of the Newton step.

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-30 ni.com

To make the associated residuals arbitrarily small, multiply them with
a suitably large constant. In cases where the residuals are defined by a
Constraint block, this can be done by feeding them through a Gain
block first.

Absolute and Relative Tolerances
The absolute and relative tolerances are used in determining the operating
point as well as the step size in several integration methods.

The convergence test used for computing the operating point is based on a
error criterion similar to that used by DASSL and ODASSL, as described
in the Stiff System Solver section of this chapter.

The variable-step Kutta-Merson, stiff system solver, and variable-step
Adams-Moulton integration methods all make use of user-definable
absolute and relative tolerances to determine whether the order and/or the
stepsize need to change. Each of these methods has a different technique for
local error computation. In the following description of these computations,
you first define some terminology:

All dynamic blocks have two fields to specify multiplication factors to scale
the sim() function tolerance parameters abstol and reltol. These
multiplication factors are stored in row vectors and have the default value
of 1. They are used only by variable-step integration algorithms and can
help improve the speed and/or accuracy of the simulation results.

xi Approximate solution for the states at the ith step.

ERR Approximate local error in the state x.

RELTOL Relative tolerance (default = 10–3). The reltol
keyword is specified in the sim() function.

ABSTOL Absolute tolerance (default = , where ε is the
machine epsilon). The abstol value is specified as a
sim() keyword.

h The time step. Just as with the fixed-step methods, this
value is originally taken from the time vector supplied
by the user, but each variable-step integration algorithm
modifies h as part of its process.

The Euclidean norm (2-norm) of a vector, except as
indicated otherwise.

ε

.

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-31 SystemBuild User Guide

Variable-Step Kutta-Merson Method
The variable-step Kutta-Merson algorithm uses the following test:

 (13-41)

then the solution for x is good. Refer to the Fixed-Step Kutta-Merson
Method section of this chapter for the definition of . Otherwise, the
stepsize h is decreased, and the Kutta-Merson equations are recalculated.

Stiff System Solvers (DASSL and ODASSL)
The stiff system solver uses a backward differentiation formula to estimate
ERR. The test to check if the solution is accurate is as follows:

First, let

(13-42)

where N is the number of equations. Then, if , the solution is good.
The default norm routine in DASSL is one that finds the root mean square
(RMS) norm of the vector:

(13-43)

Alternatively, the infinity norm of the vector may be used:

The Infinity norm is a more conservative bound for the error computation,
and choosing this norm yields more accurate answers. The RMS norm is
less accurate, but the algorithm usually executes faster. The sim()
keyword dnorm controls this error computation: dnorm=1 (RMS norm)
and dnorm=2 (infinity norm).

It is advisable to use a smaller reltol value with the RMS norm to get
more accurate answers since convergence accuracy is not the same as with
the infinity norm. Notice that stiff systems are more expensive in terms of

ERR
x xn 1+–

5
--------------------=

If ERR RELTOL x× or ERR ABSTOL≤≤

x

v i() ERR i()
RELTOL x i() ABSTOL+×
--- i=1 … N, ,()=

v 1≤

X 2 vi
2

i 1=

n

∑=

v ∞ max
i

v i()=

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-32 ni.com

computations to solve than other systems. In DASSL, the expense is more
strongly dependent on the tolerance than it is with other algorithms.

Variable-Step Adams-Bashforth-Moulton Method
In the variable-step Adams-Moulton algorithm, the stepsize is chosen so
that the local truncation error ERR satisfies:

 (13-44)

where

(13-45)

In particular, the local truncation error ERR is computed as:

 (13-46)

The index k is the order of the method and n is the time step index. The
terms, gk+1,1 and gk,1 are coefficients related to past stepsizes, and fk+1 is
a quantity related to a modified divided difference approximation of the
solution derivative at the current and past times.

With this estimate of the error ERR, the next stepsize hn+1 = rhn is chosen
so that:

(13-47)

Computing the Maximum Integration Stepsize in Variable-Step
Integration Algorithms

At the end of each integration step, the simulation scheduler decides the
stepsize for the next step. It uses five factors to compute the maximum
stepsize the variable-step integrators can take, although they may internally
choose a smaller stepsize in order to satisfy error requirements.
Fixed-stepsize integrators use the stepsize provided by the first four factors
as follows:

1. The user-defined time vector defines the times when the output is
posted. The stepsize can be no larger than the difference between the
current time and the next output posting time, as modified by dtout.

2. dtout, a sim() keyword, provides control over the spacing of posted
outputs and thus over the integration stepsize. It may override factor 1

ERR hn 1+ TOL<

TOL RELTOL x× ABSTOL+=

ERR hn gk 1 1,+ gk 1,–()φk 1+ n()=

r TOL
2 ERR×

1
k 1+

=

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-33 SystemBuild User Guide

because the integration stepsize can be no greater than the difference
between the current time and the next dtout posting time.

3. dtmax, also a keyword for sim(), places an absolute upper limit on
the stepsize.

4. The sampling of discrete subsystems might affect the length of an
integration step. At a given time, the scheduler checks for any
upcoming discrete events. The continuous integration stepsize is
limited by the difference between the current time and the next discrete
event.

5. If there is a state event within any given integration step, the stepsize
is reduced to the time instant of the state event.

Sample Simulation
In Example 13-7, a simple model is simulated with each of the integration
algorithms to compare the execution times and the errors in the solutions.
The effect of relative tolerance reltol on the variable-step algorithms
(variable Kutta-Merson, stiff system solver and Adams-Moulton) is
demonstrated. Finally, the performance of the stiff system solver is tested
with the two different error norm computations.

Example 13-7 Spring-Mass System for Comparing Integration Algorithms

For evaluating and comparing the speed and accuracy of the integration
algorithms in SystemBuild, a spring-mass system was modeled with
viscous damping proportional to the position multiplied by the velocity
and with a nonlinear cubic spring:

 (13-48)

Reference [McL50] in Appendix A, Bibliography, gives the exact solution
for the response of the above system as:

(13-49)

x·· 3xx· x3+ + 0 x0; 5– x· t0(); 0.= = =

x t() 2
t 1

x0
----+

t 1
x0
----+

 2 1
x0

 2

+
--

=

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-34 ni.com

The SystemBuild block diagram model for this system is shown in
Figure 13-10.

Figure 13-10. Block Diagram of the Cubic Spring Model

You can copy the data file for this model to your local directory with the
following Xmath command:

copyfile "$SYSBLD/examples/ialgs/cubic_spring*"

The remainder of this example compares the various errors exhibited by
each integration algorithm, where the error was computed by taking the
difference of the exact value and the value yielded by the algorithm of
interest. The position response for this system is shown in Figure 13-11.

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-35 SystemBuild User Guide

Figure 13-11. Position Response

The integration error for the Euler algorithm is shown in Figure 13-12. This
algorithm displays the largest errors, with a deviation of up to 10% of the
maximum amplitude of the response.

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-36 ni.com

Figure 13-12. Errors in Euler Integration

Figures 13-13 and 13-14 present the errors of the remaining six algorithms.
In Figure 13-14, the amount of error displayed by the stiff system solver
and the Variable-step Adams-Moulton method are the same order of
magnitude as the second-order Runge-Kutta method.

This example is presented strictly for the purpose of testing the algorithms.
These error magnitudes are not significant for most problems. The most
accurate method in SystemBuild for the example shown is the variable-step
Kutta-Merson method. In general, the variable-step Kutta-Merson method
is the most accurate among the built-in methods in SystemBuild. All
fourth-order Runge-Kutta based methods yield excellent performance, as
seen in Figure 13-13. Notice the vertical scale—the error magnitudes are
less than one millionth of the response magnitude.

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-37 SystemBuild User Guide

Figure 13-13. Errors in Fixed and Variable-Step Integration Algorithms (1)

Figure 13-14. Errors in Fixed and Variable-Step Integration Algorithms (2)

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-38 ni.com

Varying reltol had no observable effect for the variable-step
Kutta-Merson method for this specific example. Figure 13-15 presents
the effect of changing the relative tolerance reltol for variable-step
Adams-Moulton. Figure 13-16 and Figure 13-17 show the effect of varying
reltol for variable-step Kutta-Merson and for the stiff system solver.

Figure 13-15. reltol and Variable-Step Adams-Moulton Method

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-39 SystemBuild User Guide

Figure 13-16. reltol and Variable-Step Kutta-Merson; All Curves Superimposed

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-40 ni.com

Figure 13-17. reltol and the Stiff System Solver

For this example, changing certain options can improve accuracy without
adding too much computational burden. Depending on the type of problem,
you can improve the performance of the stiff system solver by changing the
norm computation method. Figure 13-18 shows the effect of this change
where simulations using the RMS norm (dnorm=1) and infinity norm
(dnorm=2) are plotted. These results may differ slightly, depending on the
platform on which SystemBuild is running. In particular, the machine
epsilon of your specific platform effects some of these results. (The
machine epsilon for these simulations was ε = 2.2204E–16.)

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-41 SystemBuild User Guide

Figure 13-18. Norms and the Stiff System Solver

In conclusion, it should be pointed out that choosing the right integration
method is as much an art as it is a science. As in everything else, experience
is the best guide in selecting an integration algorithm.

State Events
A difficulty in the modeling of continuous systems occurs when a system
shows any of a class of local discontinuities (state events1), which may
interfere with the operation of continuous integration methods.

To solve this problem, a state-event modeling capability is provided in
SystemBuild through the ZeroCrossing block, resettable Integrator blocks,
and continuous UserCode blocks (UCBs). The purpose of the feature is
to handle discontinuities in state values and switching between system
equations. Applications for state events arise in modeling mechanical
systems with impact, stiction/friction, and nonlinear systems with variable
structures—that is, potential changes in either the model or the controller.

1 In some literature such events are called switch events.

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-42 ni.com

State events are also used to simulate interrupts associated with
asynchronous trigger SuperBlocks.

The objective of state event modeling is to circumvent attempts by the
numerical integration code to integrate across drastic changes—that is,
instantaneous changes of state values in system equations—in the system.
Usually such attempts cause the local error criterion of the integration
algorithm to fail or have convergence difficulties.

These problems are most acute when the time the event occurs is not known
a priori. If state events are handled properly, observe that they do not disturb
the numerical integration of the continuous system because they are
handled outside of the integrators. In the following discussions this process
is referred to as restarting the integrators. After the state event, the
operating point of the continuous system is recomputed and the integration
can proceed without convergence problems.

SystemBuild provides two ways of dealing with state events: ZeroCrossing
blocks and continuous UserCode blocks (UCBs). NI recommends that you
first try to use ZeroCrossing blocks because they are simpler to use and do
not require writing code to handle state events. For more complex situations
where multiple state events are monitored or are interrelated, the state event
capability within a UCB might be preferable. Examples of the latter include
a limited slider with multiple hard stops and a Coulomb friction model
(Limited Slider and UserCode block (Coulomb) demos). Refer to the
Running SystemBuild Demos section of Chapter 1, Introduction, for
instructions on how to run demos.

ZeroCrossing Block
The ZeroCrossing block is located on the User Programmed palette. Any
signal connected to the ZeroCrossing block is monitored for a sign change,1
and the exact instant of the sign change is pinpointed.2 When the zero
crossing is found, the output of this block changes from 0 to 1 or from 1 to
0, depending on its previous state (that is, y(k + 1) = 1 – y(k) for the kth zero
crossing). The block output is always initialized to 0 at the beginning of a
simulation.

The simulator always restarts and the operating point is recomputed when
a zero crossing is found. Therefore, the output of the ZeroCrossing block
can be used to detect discontinuities and trigger various events elsewhere in

1 In this block, the sign change is detected only on a change from >0 to <0 or from <0 to >0, not on a change to or from 0.
2 A time point will be generated at the zero-crossing time.

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-43 SystemBuild User Guide

the model—for example, resetting a resettable integrator to avoid
integrating over a discontinuity. Notice that asynchronous trigger
SuperBlocks whose trigger signal is the output of the ZeroCrossing
block execute and post outputs before the simulation time is restarted.

In order to offer more flexibility, the resettable Integrator block has been
designed to reset either on a single edge or a double edge. A single-edge
transition is from zero or negative to positive. A double-edge transition is
either a transition from zero or negative to positive or a transition from
positive to zero or negative.

The interface of the ZeroCrossing block is simple: the number of input
signals monitored is the same as the number of output signals for selection
of zero crossings.

Refer to the Integrator block topic in the MATRIXx Help.

Example Using a Sinusoid Signal
You can create a new SuperBlock that contains a sinusoid signal as input
to a ZeroCrossing block with the following commands issued in the Xmath
Commands window:

createsuperblock "sinewave",{inputs=0,outputs=2}

createblock "sinwave",{id=1}

createblock "zerocrossing",{id=2}

createconnection 1,2;createconnection 1,0;createconnection 2,0

t = [0:.01:1]';

y = sim("sinewave",t,{extend,graph});

Figure 13-19 shows the SuperBlock that is created and the output from
each block in it. Notice the step function change in the output of the
ZeroCrossing block when the sine wave crosses 0.

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-44 ni.com

Figure 13-19. Zero Crossings of a Sine Wave

Example Using a Bouncing Ball
Example 13-8 uses a bouncing ball model with a ZeroCrossing block.

Example 13-8 Impact of a Bouncing Ball

In this example, a bouncing ball is modeled. The ZeroCrossing block
detects the moment when the ball hits the ground. Notice that the height of
the ball needs to become slightly negative in order to locate a zero crossing.
However, the height is reset to zero by the resettable integrator as soon as
the impact instant is found, and the simulation is backed up to the impact
time. Locating the zero crossing in this way allows the use of larger steps
in the time vector.

The conservation of the impulse is modeled by resetting the velocity
integrator to the last velocity (multiplied by a restitution coefficient).

When the kinetic energy of the ball becomes too small, the bouncing
frequency increases, and the zero crossing becomes degenerate. To
represent this, a boundary layer on the position of the ball has been
added to the model, as shown in Figure 13-20.

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-45 SystemBuild User Guide

To run the bouncing ball example, complete the following steps:

1. Copy the example to your local directory:

copyfile "$SYSBLD/examples/bouncer_example/bouncingball.cat"

2. Load the model into the Catalog Browser, and then open the Bouncing
Ball with Zero Crossing model in a SuperBlock Editor.

Figure 13-20. Bouncing Ball Model

3. Type the following commands into the Xmath command area to
simulate the model:

t = [0:.05:10]';

y = sim("Bouncing Ball with Zero Crossing", t, {graph, extend})

Figure 13-21 shows the output of the simulation. Note that by using the
extend keyword option in sim(), you obtain the exact instants of
impact (zero crossings) in the output PDM y. This allows an accurate
plot of the bouncing ball simulation.

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-46 ni.com

Figure 13-21. Plot of Bouncing Ball Example

Continuous UserCode Blocks
You also can find the UserCode block on the User Programmed palette.
The dialogs for both explicit and implicit UCBs include a States field for
entering the number of state event signals. The signals are monitored for a
sign change. When one occurs, the exact time of the change is pinpointed,
and actions that you specify are then executed. The mechanisms for having
this occur are described in the following paragraphs.

Associated with each UCB is a user-written program for defining state
events. The user-written code defines two things.

• The signal to monitor for occurrence of a state event

• The actions to be executed at the instant of the event

Usually, the state event problem is formulated as follows:

(13-50)

(13-51)

(13-52)

x· f x u t, ,()=

y g x u t, ,()=

z h x u t, ,()=

Chapter 13 Advanced Simulation

© National Instruments Corporation 13-47 SystemBuild User Guide

where Equation 13-50 and Equation 13-51 describe the system, and
Equation 13-52 defines a set of monitoring functions whose roots (or zero
crossings) signal a possible state event.

To help you build UCBs for state events, NI provides the following
template files:

SYSBLD/src/usr01.c
SYSBLD/src/iusr01.c

Note iusr01.c is intended for implicit UCBs only. Refer to the Implicit UCBs section of
Chapter 14, UserCode Blocks, for further details.

The UCB template divides the user-written program into six sections, each
invoked using its own flag. The sections are:

• init (perform program initialization activities)

• state (perform state updates)

• output (perform output updates)

• monit (check for state events)

• event (perform state event activities)

• last (perform program termination activities)

Two flags are provided to be used for state-event simulations—monit and
event. The UCB is called with monit=1 during every integration time
step. In the monit section, the monitor function—that is, the zero-crossing
signal defined by Equation 13-52—should be calculated. A test is done for
a sign change of z = h(x, u, t). If a sign change occurred in the last step, the
integration code executes a root solver to find the instant of zero crossing.

When the time of the zero-crossing event is found, the integrators take
a step just up to the time of the event, and then the event section code
described in the template is executed. This code can reset state values,
change model parameters, and/or switch between system equations. Refer
to the examples for a demonstration of how this can be done. After the event
is executed, the operating point is recomputed with the integrators
restarted—that is, continued from the reset values.

The event section defines the actions to be taken when a state event is
found. When SystemBuild finds a zero crossing in one of the monitor
signals, it makes a call to the UCB with event = i, where i is the ith monitor
signal that has signaled a zero crossing. Notice that the i count starts from
1, not from 0. In the event section, states can be reset to new values,

Chapter 13 Advanced Simulation

SystemBuild User Guide 13-48 ni.com

or rpar and ipar values can be set for other purposes, depending on the
application.

• In all state-event applications, the activation of the event depends on
the precise location of a zero-crossing of the signal being monitored.
For this reason, the zero-crossing detection fails if the signal becomes
degenerate—that is, stays at zero at more than one integration step.
You must take care to avoid this situation. That is, you must ensure that
the location of the zero-crossing of the signal is unique.

• It is possible to have multiple zero-crossing signals and corresponding
events in a model. Each event in the state events blocks are handled
independently of others, even when the zero-crossing locations
coincide. The new operating point is computed after all events have
been detected for that time step.

• When the ZeroCrossing block is used to simulate a model, every zero
crossing is considered to be an event. Only in UCBs are the monitor
and event sections separate.

• Time-based events can easily be handled using the output time feature
of the AlgebraicExpression block—that is, y = T—and feeding the
signal (Tevent – T) into a ZeroCrossing block.

• The set of equations simulated by SystemBuild can be switched during
a simulation using a ZeroCrossing block in conjunction with some
additional logic—for example, the DataPathSwitch block. Also,
within a UCB, user-written code in the event section can activate a
flag called by user code in the state section when determining which
state update equations to use.

The following restrictions and limitations apply to UCBs.

• State events are defined only for continuous UCBs.

• No zero crossings can be detected at time zero.

• For any given signal, only odd zero crossings can be detected within an
integration step. This means that when an integration algorithm takes
a forward time step, if the signal changes signs twice, the zero
crossings are not detected.

• Degenerate zeros—that is, successive zero values—are not detected as
zero crossings. Degenerate zeros result in a failure of the simulation.

• Fixed step integrators do not calculate the zero crossing instant as
accurately as the variable step algorithms.

• QuickSim (ialg = 8) does not detect any zero crossings because this
algorithm calculates its solution based on a linearization at t = 0.

© National Instruments Corporation 14-1 SystemBuild User Guide

14
UserCode Blocks

The SystemBuild UserCode block (UCB) interface allows you to call your
own or any external C and FORTRAN subroutines from within the
SystemBuild program. A UCB may be connected and manipulated within
your model, just like any block in the standard block library. The
hand-written source code instructions for UCBs are referred to as
UserCode functions.

In SystemBuild, there are two types of UCBs—explicit and implicit.
For most cases, you should use the explicit version. The implicit version
is only required when implicit equations are used. Implicit equations
require using the DASSL, ODASSL, or GEARS integration algorithm.
The ImplicitUserCode block is restricted to continuous systems,
whereas the UserCode block has no restrictions.

Notice that SystemBuild UCBs differ from the hand-written UCBs used for
AutoCode. The differences reflect the varying needs of simulation as
contrasted with generated real-time code. In a simulation environment,
provision must be made for continuous and hybrid considerations such as
linearization, implicit equations, and state events. AutoCode does not
support these features and has strict performance requirements and a fixed
calling sequence. The UCB template files reflect these differences.
SystemBuild UCBs cannot be used in AutoCode. However, you can link
AutoCode hand-written UCBs into the SystemBuild simulation engine and
simulate them, but their functionality is limited to what AutoCode supports.

Before using UCBs, you must familiarize yourself with programming,
compilation, and linking procedures for your hardware platform and
environment, which is largely what this chapter is about.

The main topics in this chapter are as follows:

• The Numerics of UCBs

• The Structure of UCBs

• How SystemBuild Executes UserCode Blocks

• Variable Interface UserCode Blocks

• UCB Programming Considerations

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-2 ni.com

• Building, Linking and Debugging UCBs

• Posting Error Indications

• Simulation API

Refer to the MATRIXx Help for the UserCode block for information on the
block dialog box itself.

Note In this chapter, the notation for indexing arrays (particularly the IINFO array)
follows FORTRAN conventions: indexing starts with 1, index values appear in parentheses
(). For the C language, the corresponding indexes start with 0, and the index values appear
in square brackets [].

The Numerics of UCBs
The design of the UCB interface emphasizes a paradigm of accepting
inputs and returning updates of states (optional memory elements that carry
information from one cycle to the next) and required outputs.

Explicit UCBs
In continuous systems, the explicit UCB can represent a set of first-order
ordinary differential equations (ODE) of the form:

 (14-1)

In discrete systems, it can represent a set of first-order difference equations
of the form:

 (14-2)

In the above equation, u is the input vector, x is the state vector, and y is the
output vector.

The UserCode function is called from the simulator to compute or xk+1
and y. The simulator calculates x and passes it to the UserCode function.
This value should not be modified except during initialization. There is one
exception—in continuous UCBs, x can be modified during the event call
for a state-event simulation, as discussed in the State Events section of this
chapter.

x· f x u,()=

y g x u,()=

xk 1+ f xk uk,()=

yk g xk uk,()=

x·

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-3 SystemBuild User Guide

Implicit UCBs
For continuous systems only, the implicit UCB can represent the more
general class of differential algebraic equations (DAE)—that is, models
described by both implicit differential and algebraic equations. In the most
general form, DAE systems are mathematically described by equations of
the form:

(14-3)

f is a vector-valued function with dimension equal to the number of states,
and g is the output equation vector, with dimension equal to the number of
outputs.

In the INIT section of the implicit UCB, both the x and values may be
initialized.

For example, if an ODE is expressed as a DAE, the right side of the
equation must be in the proper form:

(14-4)

Notice that the DAE integrator calculates both x and . The UserCode
function evaluates the implicit equation in the variable f with the
supplied x and values. The integrator uses f as the local residual error and
attempts to maintain it below a certain threshold.

The implicit UCB may also represent overdetermined differential algebraic
equations (ODAE)—that is, models that have more equations than
unknowns. These types of systems are mathematically described by
equations of the form:

 (14-5)

where f has dimension nx and the constraint equation fc has dimension nc,
which is the number of additional constraints. The number of constraints
cannot exceed the number of states. In this case, make sure that the number
of constraints, nc, is specified in the ImplicitUserCode Block dialog box on
the Parameter tab.

0 f x x· u, ,()=

y g x x· u, ,()=

x·

f x x· u, ,() f x u,() x·–=

x·
f x x· u, ,()

x·

0 f x x· u, ,()=

0 fc x x· u, ,()=

y g x x· u, ,()=

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-4 ni.com

To see how these equations are solved, refer to the Over-Determined
Differential Algebraic System Solver section of Chapter 13, Advanced
Simulation. This section includes an example of a pendulum.

The Structure of UCBs
This section discusses the seven Modes of Operation in UCB functions
and the UCB Templates that support the creation of these modes. Next,
UserCode Function Calling Arguments are discussed. Following these
topics are two somewhat specialized topics, Direct Terms and State Events.

Modes of Operation
There are seven distinct modes of operation associated with UCBs: INIT,
STATE, OUTPUT, LIN, MONIT, EVENT, and LAST.

Execution of each section is controlled by flags set by the simulator in the
IINFO vector, as described in Table 14-1. The sequence and the modes of
operation the UserCode function is required to compute depends on the
information specified in the Parameters tab of the UserCode Block dialog.

INIT Mode
INIT mode is performed once at the start of a simulation. During the INIT
mode call, the value of the IINFO(2) flag is set to 1. If the UCB reference
has states, the UCB is called in INIT mode twice.

• Once while executing OUTPUT mode

• Again while executing STATE mode

If the UCB reference does not have states, the UCB is called in INIT mode
only once while executing the OUTPUT mode.

Typically, no action is required in the INIT section because the initial
conditions defined on the Parameters tab of the UserCode Block dialog box
are automatically copied into X, the state vector. However, the state vector
can be modified to override these automatically loaded values during this
initialization.

If the LIN mode is used in your UserCode function, set the value of the
IINFO(5) flag to 1 during the INIT call.

Other tasks can be performed at this time, such as opening files and
allocating memory.

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-5 SystemBuild User Guide

Note If the UCB performing these tasks has states, it is your responsibility to ensure that
these operations occur only once, even though the UCB is called in INIT mode twice. To
ensure a single operation only, call these tasks only when both INIT and OUTPUT mode are
active.

STATE Mode
STATE mode is performed to compute , the state derivatives for the
continuous case, x_next for the discrete case, or the local residual error for
implicit equations. The result is returned in the F argument. During the
STATE mode call, the value of the IINFO(3) flag is set to 1.

This call is made only when the block is specified with states.

OUTPUT Mode
OUTPUT mode is required because UCBs must have one or more output
signals. During the OUTPUT mode call, the value of the IINFO(4) flag is
set to 1.

In OUTPUT mode, your code should compute the output vector in the Y
argument. Be careful to assert every output of the block at every cycle, not
just when the value changes.

MONIT Mode
MONIT mode is only required for blocks that have state events. Compute the
monitor function in F where the zeros define the locations of possible state
event transitions. During the MONIT mode call, the value of the IINFO(6)
flag is set to 1.

EVENT Mode
EVENT mode is required only for blocks that have state events when a zero
crossing is found by the integrator. At this point, the integration is halted
and you may reinitialize the state values (for explicit blocks) or state and
derivative values (for implicit blocks). During the EVENT mode call, the
value of the IINFO(7) flag is set to the ith zero crossing detected during the
MONIT mode calls.

LIN Mode
This optional mode allows you to explicitly calculate the Jacobian
linearization of state and output equations. During the LIN mode call, the
value of the IINFO(4) flag is set to 1.

x·

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-6 ni.com

By default, a double-sided finite difference linearization is always
performed by the simulator linearization. However, you can use an explicit
linearization calculation and insert a custom algorithm.

To enable the UCB to call your function with the LIN flag, set the LIN flag,
IINFO(5) = 1 during the INIT mode. This instructs the simulator to call
your UserCode function to evaluate the following two expressions in the F
and Y arguments when a linearization is needed:

(14-6)

(14-7)

LAST Mode
This optional mode is called once at the completion of simulation. During
the LAST mode call, the value of the IINFO(1) flag is set to 2.

This mode allows you to “close your books” on the simulation—for
example, by closing files, deallocating memory, and other housekeeping.
No parameters are passed with this mode.

UCB Templates

UserCode function templates are furnished in the SYSBLD/src directory.
The templates, usr01.c (C language) and usr01.f (FORTRAN), are for
explicit UCBs, while iusr01.c and iusr01.f are for implicit UCBs.
Each template consists of a single function prototype with sections
designed to contain the computational algorithms associated with the seven
distinct modes of operation.

If you want the same UCB code to work for both SystemBuild simulation
and AutoCode, use the sa_user.c template found in CASE/ACC/src.
Refer to the AutoCode User Guide for more information.

Copy the appropriate file to your working directory and insert your custom
simulation algorithms in the example function.

UserCode Function Calling Arguments
The arguments for the explicit UserCode function are:

USR(IINFO, RINFO, U, NU, X, F, NX, Y, NY, RPAR, IPAR)

δx·
u∂

∂f
xop uop,

x
u∂

∂f
xop uop,

uδ+δ=

δy
x∂

∂g
xop uop,

δx +
u∂

∂g
xop uop,

δu=

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-7 SystemBuild User Guide

The arguments for the implicit UserCode function are:

IUSR(IINFO, RINFO, U, NU, X, XD, NX, F, FC, Y, NY, RPAR,
IPAR)

where NU, NX, and NY are the dimensions of the respective values.

It is important that during each call mode, only specific arguments that have
write access are modified.

Refer to the listing of the usr01 or iusr01 templates for more
information.

The meaning of U, Y, X, and F vary with the type of call and can be
determined by values in IINFO.

The parameter vectors RPAR (real) and IPAR (integer) let you pass
parameters to your model from the block dialog. The values in RPAR
and IPAR, as well as any initial state values, x0, can be changed on the
Parameters tab of the block dialog box so that a given UCB can be reused
in a model with different parameters. You can enter the RPAR, IPAR, and
initial conditions parameters as %Variables. This lets you modify the
routine logic and equation coefficients between simulations without having
to re-edit the model.

The following sections define the types of variables you encounter using
UCBs.

NU = Number of inputs

NX = Number of states

NY = Number of outputs

RPAR = General vector of floating point parameters initialized by
the simulator with the values entered from the parameter
dialog box and dimensioned NRP, which is found in
IINFO(10)

IPAR = General vector of integer parameters that the simulator
initializes with the values entered from the parameter
dialog box and dimensioned NIP, which is found in
IINFO(9)

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-8 ni.com

IINFO Array
IINFO is an integer array as shown in Table 14-1 that contains information
flags used for communication with the simulation engine. Except as noted
in the discussion of INIT Mode, the UserCode function may only modify
the first element of IINFO which is a status flag. Modifying other values is
illegal and may produce unpredictable results. As in the rest of this chapter,
in the Table 14-1, FORTRAN conventions are used in indexing into
IINFO. For C code, the index starts from zero.

Table 14-1. IINFO Vector

IINFO Element Descriptor

IINFO(1)=0, -1, -2 Error Flag {0=Normal, –1=Warning,
–2=Error}.

IINFO(2)=1,2 INIT or LAST mode. Initialize (1 = First call,
2 = Last call).

IINFO(3)=1 STATE mode. Compute state derivatives in F.

IINFO(4)=1 OUTPUT mode. Compute outputs in Y.

IINFO(5)=1 LIN mode. Compute linearization in F and Y.

IINFO(6)=1 MONITOR mode. Compute monitor function
for state event detection in F.

IINFO(7)=I EVENT mode. Handle ith state event
transition.

IINFO(8)=NSE Number of state events.

IINFO(9)=NIP Number of integer parameter values.

IINFO(10)=NRP Number of real parameter values.

IINFO(11)=NC Number of constraint equations (implicit
UCB only).

IINFO(12)=1 Inside linearization process (Jacobian).

IINFO(13)=1 Inside sim() initialization process
(TIME=0).

IINFO(14)=1 Update with converged state values.

IINFO(15)=1 Integration algorithm (IALG).

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-9 SystemBuild User Guide

RINFO Array
RINFO is a real array, as shown in Table 14-2, that contains timing and
related information for the called routine. UserCode may not modify any
values in RINFO.

Mode Parameters
Table 14-3 defines all the Mode parameters associated by all the modes of
the UCBs.

Access refers to what values the UCB is allowed to read or modify.

RO = Read only, do not modify

WO = Write only, must be calculated

RW = Read or write, may optionally modify

Table 14-2. RINFO Vector

Array Continuous Discrete Triggered

RINFO(1) Current time Current time Current time

RINFO(2) 0.0 Sample interval 1.0

RINFO(3) 0.0 Initial time skew 0.0

RINFO(4) 0.0 0.0 Timing requirement

RINFO(5) Simulation start time Simulation start time Simulation start time

RINFO(6) Simulation end time Simulation end time Simulation end time

RINFO(7) reltol reltol reltol

Table 14-3. Mode Parameters

Mode Name Dimen Access Explicit UCB Implicit UCB

INIT U NU RO Input vector Input vector

Y NY — Output vector Output vector

X NX RW State vector State vector

XD NX RW — Derivatives

F — — — —

FC — — — —

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-10 ni.com

STATE U NU RO Input vector Input vector

Y — — — —

X NX RO State vector State vector

XD NX RO — Derivatives

F NX WO State derivatives Residual error

FC NC WO — Constraint eqn

OUTPUT U NU RO Input vector Input vector

Y NY WO Output vector Output vector

X NX RO State vector State vector

XD NX RO — Derivatives

F — — — —

FC — — — —

MONIT U NU RO Input vector —

Y — — — —

X NX RO State vector State vector

XD NX RO — Derivatives

F NSE WO Monitor function Monitor function

FC — — — —

EVENT U NU RO Input vector Input vector

Y — — — —

X NX RW State vector State vector

XD NX RW — Derivatives

F — — — —

FC — — — —

Table 14-3. Mode Parameters (Continued)

Mode Name Dimen Access Explicit UCB Implicit UCB

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-11 SystemBuild User Guide

Definitions:

(14-8)

(14-9)

(14-10)

where f = f(xop, , uop), g = g(xop, , uop), f c= fc(xop, , uop), and
xop, , uop correspond to the current operating point.

Direct Terms
As previously mentioned, UCBs are systems that solve the following
linked pair of equations,

where all of these (x, , u, and y) are vectors of user-defined size. Since a
UCB generally has multiple inputs, it is possible—and in many case,
likely—that one or more of the inputs is not used in the computation of any
of the outputs, but instead is used only to compute the state derivatives (next
state in the discrete case).

LIN U 2*NU RO [Uop;dU] [Uop;dU]

Y NY WO dG dG

X 2*NX RO [Xop;dX] [Xop;dX]

XD NX RO — [XDop; dXD]

F NX WO dF dF

Y NY WO dG dG

LAST No provision is made for passing parameters with this mode.

Table 14-3. Mode Parameters (Continued)

Mode Name Dimen Access Explicit UCB Implicit UCB

df f∂
x∂

-----dx f∂
u∂

-----du f∂
x·∂

-----dx·+ +=

dg g∂
x∂

-----dx g∂
u∂

-----du g∂
x·∂

-----dx·+ +=

dfc
fc∂
x∂

------dx
fc∂
u∂

------du
fc∂
x·∂

------dx·+ +=

x·op x·op x·op
x·op

x· f x u,()=

y g x u,()=

x·

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-12 ni.com

This makes constructs such as the one shown in Figure 14-1 not only
possible, but solvable without resorting to implicit solvers.

Figure 14-1. UCB with Direct Terms

If none of the outputs is dependent on input 1, then the simulator may
compute the other inputs to the UCB, execute the UCB, compute inputs to
the Summer, and finally compute the Summer. Later when the simulator
computes the state derivatives, input 1 is valid. Since the simulator cannot
automatically determine which UCB inputs are used to create outputs, the
user must tell the simulator which inputs are direct terms. Only direct terms
are included in the OUTPUT pass that computes the UCB outputs. If direct
terms are not identified, the simulator assumes that this construct forms an
algebraic loop that either requires the use of an implicit System Solver (if
the SuperBlock is continuous) or the insertion of a time delay between the
UCB and the Summer.

To make an input a direct term, set the Input Direct Terms vector on the
UCB Parameters tab. This vector is of the same size as the number of inputs
to the UCB. A value of 1 identifies the input as a direct term. A value of 0
means that the corresponding input is not used in the computation of any of
the outputs of the UCB.

Properly identifying direct terms assists the simulator and AutoCode in the
detection of algebraic loops in the model. Specifically, this capability
allows the simulator to note that some loops that are seemingly algebraic
are actually not.

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-13 SystemBuild User Guide

Note Any UCB input that is not marked as a direct term is undefined during the OUTPUT
pass of the UCB but is valid for the other passes (including STATE, MONIT, and EVENT).
Use caution. Incorrectly identifying the direct terms can invalidate the numeric results of
the simulation since certain outputs would be computed using undefined inputs.

Example 14-1 provides an example of using direct terms.

Example 14-1 Sample Source File Demonstrating Direct Terms

#include "matsrc.h"

#if (FC_)

#define dirterms dirterms_

#endif

#if (PC || VAX)

#define DIRTERMS DIRTERMS

#endif

void dirterms (iinfo,rinfo, u,nu, x,f,nx, y,ny, rpar,ipar)

int iinfo[], ipar[], *nu, *nx, *ny;

double rinfo[], rpar[], u[], x[], f[], y[];

{

 int i;

 int init = iinfo[1]==1;

 int last = iinfo[1]==2;

 int state = iinfo[2]==1;

 int output = iinfo[3]==1;

 int lin = iinfo[4]==1;

 int monit = iinfo[5]==1;

 int event = iinfo[6];

 int nse = iinfo[7];

 int nip = iinfo[8];

 int nrp = iinfo[9];

 double time = rinfo[0];

 double tsamp = rinfo[1];

 double tskew = rinfo[2];

 double *uop, *xop;

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-14 ni.com

 /*--

 Initialization code. It is recommended that you insert code here

 to check the assumptions required for this function to operate.

 The code below is an example of some checks that can be done.

 --*/

 if (init) {

 if (*ny!=*nu) {

 stdwrt("ERROR : Number of inputs and outputs must be equal.\n");

 iinfo[0] = -2;

 }

 if (*nx!=1) {

 stdwrt("ERROR : Number of states for this example must be 1\n");

 iinfo[0] = -2;

 }

 }

 /*--

 State function update, compute state derivatives xdot in f vector

 --*/

 if (state) {

 f[0] = u[0];

 }

 /*---

 Output function update, compute outputs in the y vector

 ---*/

 if (output) {

 y[0] = x[0];

 for (i=1; i<*ny; i++)

 y[i] = u[i];

 }

 if (lin) {

 }

 if (monit) {

 }

 if (event) {

 }

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-15 SystemBuild User Guide

 /*---

 Terminate simulation. If any action needs to

 be done when the simulation ends, do it here.

 --*/

 if (last) {

 }

 return;

}

State Events
In continuous systems, both explicit and implicit UCBs support
integration of piecewise-continuous models—that is, equations that
have discontinuities in x, or, for implicit systems, in some of the
derivatives. Moreover, the structure of a system may change completely
by switching among different differential equations as a function of time
or the state values.

The time points at which discontinuities occur are described by state events,
which are implicitly defined by the zeros of a user-supplied monitor
function. For explicit systems, the monitor function is of the form:

fm(x, u, t) (14-11)

and, for implicit systems, it is of the form:

fm(, x, u, t) (14-12)

where fm is of order NSE, the Number of State Events specified on the
Parameters tab of the UCB block dialog.

Discontinuities are treated by stopping the integration at each discontinuity
point and restarting the integration afterwards. Because the integration is
restarted, the discontinuity does not affect the integration method. If many
discontinuities appear during a simulation interval—for example, at every
integration step—this technique becomes very inefficient.

If Number of State Events is greater than zero on the Parameters tab of the
block dialog, the UserCode() function is called from the integration
executive to compute the monitor function.

If one or more of the monitor functions passes through zero, the integration
executive locates this point within a tolerance (ztol) with respect to the

x·

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-16 ni.com

time axis and halts the integration. At that point, the UserCode()
function is called and given the opportunity to modify the state vector for
explicit systems, or the state and derivative vectors for implicit systems.
This must be performed in the EVENT section of the UCB code. Notice that
the implicit DAE should be consistent (that is, f(x, , u) = 0) with the given
state and derivative values.

If multiple state events are specified in one UCB, the event flag (IINFO(7))
may be used to determine which state event experienced a zero crossing.
The range of the event flag is from 1 to NSE. If there are multiple state
events at a given instant, the simulator makes individual calls for each
event.

How SystemBuild Executes UserCode Blocks
Since the User debugging feature is only accessible through UserCode
blocks, it is very important to understand how SystemBuild executes
UserCode blocks as well as other blocks in the model.

There are several factors that influence how often a UserCode block is
executed in a simulation. These are discussed in the following sections.

Execution of STATE Versus OUTPUT Modes in the UserCode
Usually when a block is executed, it is called in two passes: OUTPUTS and
STATE modes (refer to the Modes of Operation section of this chapter). In
the first pass, the outputs are updated. In the second pass, the state
derivatives are updated. The two updates cannot be done simultaneously
because the outputs must be propagated throughout the system before the
state derivatives can be computed. It is possible to have only an output
update in order, for example, to post user output values. Also, during
numerical integration some output updates may be skipped if they do not
affect the dynamic part of the model.

One important issue in debugging a system with the UserCode block
debugging feature is that if the UserCode block does not have any states
(number of states is defined in the block form) then it is not called during
STATE updates. Thus, in order to debug the integration algorithm, internal
steps for states and derivatives—that is, derivative evaluations at
non-converged time points—the UserCode block must be created with
at least one dummy state. This ensures that the block is in the appropriate
chain of blocks to be executed during state updates.

x·

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-17 SystemBuild User Guide

When the derivatives of the system are accessed, it is important that these
values belong to the most recent computational pass. In other words, the
UserCode block should be the last block to be visited by the simulator
during the computation of the derivatives. To ensure this order of
computation, place the UserCode block in the rightmost pane using a
Sequencer block. This ensures that when the analyzer sorts the blocks, the
UserCode block is the last one to be executed.

Timing Attributes
The timing attribute of the parent SuperBlock is determined by its type:
continuous, discrete free-running, discrete enabled, triggered, or
procedure.

Continuous blocks are executed:

• At initialization (refer to the Initialization section)

• During numerical integration

• When state events occur

• When posting user output values

All other blocks are executed:

• At initialization (refer to the Initialization section)

• At the next sample time based on sample period, trigger values, and so
forth

Initialization

Simulation INIT Modes
The initialization type for simulation is set by the initmode keyword, and
it can take the values [0–4]. The default value is initmode=3.

Type 0 Initialization
Only the continuous subsystems are initialized. The UserCode block is
executed once to initialize all system outputs.This is called the
INITUserCode() call. The UserCode block also can be executed several
more times with other calls (STATE, OUTPUT) by a Newton-Raphson solver
in case the system includes an ImplicitUserCode block or algebraic loops,
so that a steady-state operating point can be found. Discrete subsystem
outputs are left at -sqrt(eps).

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-18 ni.com

Type 1 Initialization
Continuous and discrete subsystems are executed once. Continuous
subsystems (with output updates only) may be executed more than once if
the system is implicit.

Type 2 Initialization
Continuous, discrete, enabled, and triggered subsystems are executed once.
Continuous subsystems with output updates only maybe executed more
than once if the system is implicit.

Type 3 Initialization
This is the same initialization type as for type 2 except that outputs are
propagated instantaneously between subsystems.

Type 4 Initialization
This is the same initialization type as for type 3 except that the Newton
solver is disabled. This guarantees that the continuous subsystem is
executed only once. However, after this initialization, the algebraic loops
and ImplicitUserCode block derivatives (or states) remain uninitialized
with their values left at -sqrt(eps).

Impolite UCB Initialize Mode
In the ImplicitUserCode Block dialog box , the Initialize Mode field allows
you to set the initial conditions to be either states or derivatives. The
interpretation of the sim(), lin(), or simout() input arguments x0
and xd0 for state and derivative initial conditions is dependent on this
dialog box definition.

If they are specified, the sim(), lin(), or simout() arguments x0
and xd0 override the dialog box defaults.

Table 14-4. State and State Derivative Initial Conditions

Dialog
Box

Definition

sim(), lin(), or simout() argument

x0 xd0

states sim() initial condition initial condition for
operating point solver

derivatives initial condition for
operating point solver

sim() initial condition

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-19 SystemBuild User Guide

Numerical Integration Algorithm
The integration algorithm can take the values [1–10]. Refer to the
Comparing Integration Algorithms section of Chapter 13, Advanced
Simulation.

The following is a detailed explanation of all model updates done for each
integrator. Converged updates are indicated in UserCode blocks by the flag
IINFO[13] = 1. Otherwise, it is 0. Also notice that some blocks may be
skipped for output updates during integration if they do not affect the
dynamic part of the model. The notation is:

The timestep tk is chosen at every point by computing the minimum of:

• The difference between the current time and the next discrete,
triggered, or enabled event

• The difference between the current time and the next external output
time determined by the user time vector

• dtmax

• dtout

The time steps taken by the variable-step numerical integration algorithms
are limited by the user output points. The algorithms may take smaller steps
whenever necessary—that is, in order to satisfy the local error tolerance
criterion. However, these intermediate converged values are not necessarily
posted in the user output vector during simulation from the Xmath
Comands window or the SuperBlock Editor. The debugging feature
provides access to these values.

ialg = 1, Fixed-step Euler
OUTPUT: t = tk, converged state values

STATE : t = tk, converged state values

OUTPUT: t = tk+h, user output posting

OUTPUT: Output update.

STATE: State update.

t: Time.

h: Current step size taken by the integration algorithm.

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-20 ni.com

ialg = 2, Fixed-step RK2
OUTPUT: t = tk, converged state values

STATE : t = tk, converged state values

OUTPUT: t = tk+h, inside integration

STATE : t = tk+h, inside integration

OUTPUT: t = tk+h, user output posting

ialg = 3, Fixed-step RK4
OUTPUT: t = tk, converged state values

STATE : t = tk, converged state values

OUTPUT: t = tk+h/2, inside integration

STATE : t = tk+h/2, inside integration

OUTPUT: t = tk+h/2, inside integration

STATE : t = tk+h/2, inside integration

OUTPUT: t = tk+h, inside integration

STATE : t = tk+h, inside integration

OUTPUT: t = tk+h, user output posting

ialg = 4 or 5, Fixed and Variable Kutta-Merson
OUTPUT: t = tk, converged state values

STATE : t = tk, converged state values

OUTPUT: t = tk+h/3, inside integration

STATE : t = tk+h/3, inside integration

OUTPUT: t = tk+h/3, inside integration

STATE : t = tk+h/3, inside integration

OUTPUT: t = tk+h/2, inside integration

STATE : t = tk+h/2, inside integration

OUTPUT: t = tk+h, inside integration

STATE : t = tk+h, inside integration

OUTPUT: t = tk+h, user output posting

ialg = 6, DASSL
Repeated sequence:

OUTPUT: t = tk+h, inside predictor iterations

STATE : t = tk+h, inside predictor iterations

OUTPUT: t = tk+h, inside jacobian update

STATE : t = tk+h, inside jacobian update

Corrector update:

OUTPUT: t = tk+h, corrector update if not converged

STATE : t = tk+h, corrector update if not converged

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-21 SystemBuild User Guide

User outputs:

OUTPUT: t = tk+h, user output posting

ialg = 7, Adams-Bashforth-Moulton
OUTPUT: t = tk+h, predictor update

STATE : t = tk+h, predictor update

OUTPUT: t = tk+h, corrector update

STATE : t = tk+h, corrector update

OUTPUT: t = tk+h, interpolate outputs

STATE : t = tk+h, interpolate outputs

OUTPUT: t = tk+h, user output posting

ialg = 8, Quicksim
OUTPUT: t = tk, inside integration

STATE : t = tk, inside integration

OUTPUT: t = tk+h, user output posting

ialg = 9, ODASSL and ialg=10, GEARS
Identical to DASSL.

Operating Points
This section provides some notes about operating points for UCBs.

Implicit Integration Algorithm Operating Point
Implicit UCBs contain equations of the form f(x, , u) = 0. When these
equations are not exactly satisfied, there is a residual δ = f(x, , u). At
the beginning of each sim(), lin(), or simout() operation, the
SystemBuild software tries to compute a valid operating point where
the residual δ is zero.

Implicit implementation algorithms (DASSL, ODASSL, and GEARS)
require that the operating point be consistent—that is, the residual δ is 0 or
very small—at the beginning of a simulation. Under normal conditions,
SystemBuild operating point solver computes the correct initial conditions
for x or before the integration starts. However, there may be cases in
which the operating point is singular, that is, the Jacobian of the equations:

(14-13)

x·
x·

x·

x∂
∂ f x x· u, ,()

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-22 ni.com

or

(14-14)

(or a mixed partial if different implicit UCBs have different initial condition
definitions for states/derivatives) is singular. Under these conditions it is
still possible to start the simulation or to perform lin() or simout(),
provided that the residual δ is zero or very small.

When the operating point is singular, it is up to the user to provide initial
conditions because the SystemBuild software cannot compute them. The
simout() function has a special feature that facilitates this when it is
used with initmode = 4. Refer to the Type 4 Initialization section. For
example, if:

[x,xdot,y]=simout("model",
{x0=x0_init, xd0=xd0_init, u0=u0_init,

initmode=4})

then the operating point computation is bypassed and the xdot vector of the
output argument of simout() contains the residuals δ = f(x0, xd0, u0),
not the derivatives, in its corresponding entries.

You can use this feature to write algorithms that compute the correct initial
conditions , or u0 iteratively.

Computing the Operating Point Jacobian Matrix
Note the following for the computation of the operating point Jacobian
matrix:

• The Jacobian is computed only for algebraic loops associated with
continuous subsystems,

• The Jacobian computation is skipped when the sim() option
initmode=4.

If the function SIMAPI_GetOperatingPointJacobian() is used for
cases when the Jacobian is not computed or not available due to one of the
above cases, a program crash or garbage output may result.

x·∂
∂ f x x· u, ,()

x0 x·0,

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-23 SystemBuild User Guide

Computing the Implicit Solver Jacobian Matrix
Note the following for the computation of the Implicit Solver Jacobian
matrix:

The Jacobian is only computed for the two Implicit Stiff Solver integration
algorithms, ialg = 6 (DASSL) and ialg = 9 (ODASSL).

The symbolic form of the Jacobian computed by DASSL and ODASSL is:

(14-15)

where , and c is an iteration constant determined by the
Implicit Solver.

Variable Interface UserCode Blocks
This section discusses the variable interface UserCode block capability. It
should be used only if your ultimate goal is generated code because its sole
benefit is enhanced code efficiency.

Although SystemBuild UCB code discussed in the Modes of Operation
section of this chapter cannot be used in AutoCode, handwritten UCB code
intended to be linked with AutoCode can be linked into a SystemBuild
simulation if the user code conforms to a standard interface. A standard
UCB Interface Type can be either Fixed or Variable.

A fixed interface UCB conforms to a required set of function arguments
specified in the AutoCode Reference. In the fixed interface code generation
paradigm for UCBs, all signals passed into the UserCode block are
converted to float. At the completion of the user code task, floats are cast to
the output data type specified in the block diagram.

The variable interface accommodates mixed data types and optional
arguments. It passes the input signal data types and output data types
specified in the UserCode Block dialog. In addition, signal labels and
names from the dialog box influence UCB inputs and outputs (to produce
scalars or arrays) just as they do for other blocks. Finally, although the
variable interface makes a strictly ordered call to the UCB, it allows
arguments to be optional—that is, it does not call or generate code for
parameters that are not used.

J
x∂

∂f c
x·∂

∂f
+=

f f x x· u, ,()=

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-24 ni.com

With these capabilities, it is possible for the same handwritten code to be
used in both SystemBuild and AutoCode simulations. Because the code is
written for AutoCode simulation, you must write a C wrapper that allows
the SystemBuild simulator to interface with the fixed calling sequence that
AutoCode expects. The UCB calls the wrapper, which, in turn, calls the
handwritten code. Figure 14-2 illustrates the SystemBuild and AutoCode
calling sequence for user code.

Figure 14-2. SystemBuild and AutoCode Share User Code

To use a variable interface UCB for simulation, complete the following
steps:

1. Write a C wrapper that calls the user code. Refer to the Writing a
Wrapper section.

2. Specify the variable interface in the UCB dialog box. Refer to the
Specifying the Variable Interface section.

3. Create user code that conforms to the specification within the
UserCode block, including function name, inputs, outputs, and so
forth. Refer to the The Structure of UCBs section.

Using a Wrapper for SystemBuild to Simulate Code Written for AutoCode
As depicted in Figure 14-2, the UCB must call a wrapper that then calls the
user code. A simple example of a single file that includes a wrapper and the
user code is available in SYSBLD/examples/variable_ucb/
sample/samp_vucb.c. You can use this code for both SystemBuild and
AutoCode. Figure 14-3 highlights portions that are of particular interest.

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-25 SystemBuild User Guide

Figure 14-3. Excerpts from samp_vucb.c

#ifdef SBUSER
#include "matsrc.h"
#include <math.h>

#if (FC_)
#define usr01 usr01_
#endif
#if (PC || VAX)
#define usr01 USR01
#endif

:

void usr01 (iinfo,rinfo, u,nu, x,f,nx, y,ny, rpar,ipar)
int iinfo[], ipar[], *nu, *nx, *ny;
double rinfo[], rpar[], u[], x[], f[], y[];
{
 :
 :
}

#ifdef SBUSER
/* re-declare RT_INTEGER to match SIM integer typ
#undef RT_INTEGER
#define RT_INTEGER int
#endif

#ifdef SBUSER
/* change the name of the usercode when we are i
** SIM so name change is unnecessary in model
**/
void usr01_code
#else
void usr01
#endif
 (
 RT_FLOAT input_1,
 RT_FLOAT input_2,
 RT_INTEGER int_inputs[2],
 RT_INTEGER *out_value,
 RT_INTEGER *IP,
 RT_INTEGER nIP
)
{
 RT_INTEGER i;
 RT_FLOAT tmp = input_1 + input_2;

 :
 :

 *out_value = (RT_INTEGER)tmp;

}

UCB WRAPPER

USER CODE

void user01 defines the
interface for the simulation in
SystemBuild.

#ifdef SBUSER conditions
are in effect during Systembuild
simulation.

In simulation, the wrapper refers
to the user code as
usr01_code.

In AutoCode, wrapper code is
ignored and teh user code is
referred to directly as usr01.

The arguments to the user code
correspond to the specification within
the UserCode block. Refer to the
AutoCode Reference for details on
these arguments.

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-26 ni.com

Writing a Wrapper
The purpose of the wrapper is to interface the sim() UserCode interface
to your variable interface user code. The wrapper must convert the input
and output data from the sim() Usercode interface to match the variable
interface user code. Examine the sample files test_vucb.c and
samp_vucb.c. Each contains a wrapper for UserCode functions. To copy
the files to your current working directory, issue the following commands
from the Xmath command area:

copyfile "$SYSBLD/examples/variable_ucb/test/test_vucb.c"

copyfile "$SYSBLD/examples/variable_ucb/sample/samp_vucb.c"

The wrapper must perform the following tasks:

• Create local variables that match the data type and shape of variable
interface UCB inputs and outputs.

• Convert the data from the sim() interface to the local variables. Refer
to the Converting Data from the sim() Interface section.

• Initialize the INFO status record, if needed, to indicate the appropriate
mode (INIT, OUTPUT, or STATE).

• Call the variable interface UserCode using the local variables as
arguments to the function.

• Convert the local variables representing the output data back into the
sim() interface.

• Reflect any error code, if using the INFO status record, back to the
sim() interface.

Converting Data from the sim() Interface
The sim() interface presents all input and output data as floating-point
data. Since the variable interface UserCode will most likely have data types
other than float, the sim() data must be converted to the appropriate data
type.

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-27 SystemBuild User Guide

To perform data type conversion, use the AutoCode SA Library header files
and some of the macros defined within them. Refer to the AutoCode
Reference and the SA Library source files for additional discussion. Several
of these macros are useful for conversion, in particular:

Converting Data Back to the sim() Interface
After executing the variable interface UserCode, you must convert the
output data back into the sim() interface. This implies converting the
output data and copying it into the sim() interface. It is acceptable to
typecast the integer and logical values into the sim() interface. However,
for fixed-point data, you must use a conversion routine. Refer to the SA
Library files for various conversion macros. The following conversion
macros can be useful for this purpose:

Specifying the Variable Interface
The UserCode block parameters are fully documented in the MATRIXx
Help. To see this information, type help usercode from the Xmath
command line, or click the Help button in the UserCode Block dialog box.

Setting Variable Interface Parameters
To use the variable interface, go to the Parameters tab and set the parameter
Interface Type to Variable. The Time Argument and Info Argument fields
are activated when the Interface Type is set to Variable. Select the
appropriate action for each (Yes or No).

I_Fpr() Conversion from Floating Point to Integer
(using protection and rounding)

SB04_Fpr() Conversion from Floating Point to
SignedByte, Radix 04

ULn02_Fpr() Conversion from Floating Point to
UnsignedLong, Radix -02

F_SS03() Conversion from SignedShort, Radix 3 to
Floating Point

F_UB06() Conversion from UnsignedByte, Radix 6 to
Floating Point

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-28 ni.com

Specifying Data Types
Input data types are inherited from source blocks. Output data types are
specified on the Outputs tab of the UserCode Block dialog box.

Specifying Input Shapes
Input labels and names determine the structure of input data to the user
code. Refer to the Creating Sequential Names for Vectors and Matrices
section of Chapter 5, Blocks. The precedence for creating the shape (scalar
or vector) is determined by:

• Input names (specified on the Inputs tab of the UserCode Block dialog)

These override names inherited from the input signal.

• Output names (inherited from the signal source block)

• Output labels (inherited from the signal source block)

• UCB block name

Specifying Output Shapes
Output labels and names determine the structure of the output data from the
user code, as explained in the Creating Sequential Names for Vectors and
Matrices section of Chapter 5, Blocks. The precedence for creating the
shape (scalar or vector) is determined by:

• Output names (specified on the Outputs tab of the UserCode Block
dialog)

• Output labels (specified on the Outputs tab of the UserCode Block
dialog)

• UCB block name

Running a Variable Interface Example
The following is an example that you can simulate and for which you can
generate code.

Simulating the Variable Interface UCB in
SystemBuild
To simulate the variable interface example, complete the following steps:

1. Using the following commands, move the example to your current
working directory:

copyfile "$SYSBLD/examples/variable_ucb/test/test_vucb.cat"

copyfile "$SYSBLD/examples/variable_ucb/test/test_vucb.c"

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-29 SystemBuild User Guide

2. Load the file test_vucb.cat into SystemBuild.

This file contains both model data and Xmath variables.

3. Open the SuperBlock test_vucb.

4. Select Tools»Simulate.

5. On the Parameters tab of the SystemBuild Simulation Parameters
dialog, make the Time Vector t and the Input Data u. Give the Output
Variable the name tv_sb. Enable Plot Outputs and Typecheck.
Click OK.

The simulation results are shown in a strip plot and saved to the
variable tv_sb.

Generating Code for a Variable Interface UCB in
SystemBuild
To generate code for the variable interface example, complete the
following steps:

1. In the SystemBuild Catalog Browser, select the SuperBlock
test_vucb.

2. Select Tools»AutoCode.

3. Click OK.

For instructions on compiling and linking the user code, refer to the
Standalone Simulation section of the AutoCode User Guide. Then you
can compare the generated code outputs with the simulation outputs.

UCB Programming Considerations
Several details must be considered when programming UCB subroutines.

• Take care not to overwrite areas of memory used by the simulator
executable. The names of any subroutines you add, as well as any
COMMON blocks, must be different from those already used in the
product. To ensure uniqueness, prefix all your global variables and
internal function names with ZZ, which is never used inside the
simulation engine.

Use function names that begin with usr or iusr to avoid conflict with
other symbols defined in the simulation engine.

• If you are using dynamic memory allocation/deallocation, make sure
that your code does not write beyond the allocated buffer, write into a
buffer that has been deallocated, and so forth.

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-30 ni.com

• If a UCB is included in a system more than once, it must use static
memory very carefully, for each instance of an identically named UCB
consists of another call to the user-supplied code with potentially
different parameters but the same static variables.

• If you have existing code that evaluates derivative and output equations
for other integration packages, it is preferable to insert a call to that
routine in a UCB, rather than writing the equations directly into the
UCB. In that way your equations are usable under both SystemBuild
and your other packages.

Building, Linking and Debugging UCBs
The simulator is responsible for reading information about UserCode from
the model and other sources and then taking that information and
collecting, compiling and executing UserCode. This section explains this
process. As much as possible, the discussion is platform and language
independent, but differences between platforms and languages are noted.

After the simulator has completed the UCB compilation process, all of the
user code resides in a shared library (on Windows, a dynamic link library)
with the name simucb.ext, where the extension is platform specific. This
is referred to as the UCB shared library.

Caution Before MATRIXx 6.0, new simulator executables (simexe.lnx on UNIX
systems or simexe.exe on PC systems) were created as the end result of this process.

You must remove old versions of a rebuilt simulator executable before using any of the
following guidelines. Failure to do this will cause unexpected runtime failures.

Note Any time you simulate or generate code for a model that contains UCBs, that model
should exist in a separate directory. Otherwise, you risk mixing objects between models
because there is only one simucb shared library per working directory.

Collecting UserCode Files
UserCode files can be specified from the Parameters tab of the UserCode
Block dialog, with the keywords csource and fsource, in the makefile
itself, or with the ucbcodeloc sim option. This section discusses each
method.

Note If you have both C and FORTRAN UCB source files, make sure that they do not
have the same root name (ignoring the extension). For example, it is an error to have UCB
source files myucb.c and myucb.f in the same simulation.

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-31 SystemBuild User Guide

Parameters Tab of the UserCode Block Dialog
The primary location for entering a filename is the Parameters tab of the
UserCode Block dialog. This filename may be a simple filename (for
example, usrcode.c), or it may contain a relative pathname (for example,
usrcodedir/usrcode.c on UNIX systems), a complete path name
(including a drive letter on Windows systems), or environmental variables
(for example, %UCBCODELOC%\usrcode.c on a Windows system). Only
environmental variables that exist before SystemBuild is invoked are
recognized by the simulator.

CSOURCE and FSOURCE
You can specify additional source code files using the keywords csource
(for C language files) and fsource (for FORTRAN language files). You
can specify csource and fsource files with the linksim() function or
the SETSBDEFAULT command. For example,

linksim ("top",{csource="ucb1.c ucb2.c",fsource="ucb3.f"});

SETSBDEFAULT {csource="ucb14.c ucb15.c", fsource="ucb11.f"}

If csource or fsource is set using SETSBDEFAULT, the filenames are
combined with those on the linksim() command line to create the file
list.

Specifying Sources in the makefile
When the simulator creates the UCB shared library, it uses a
platform-specific makefile. This makefile resides at SYSBLD/src/
makefile for UNIX systems, and SYSBLD\src\makeucb.mk for PC
systems. The environment variable $SYSBLD is available from within the
product, and it takes the UNIX form of environment variables. You can
copy the makefile into the local project directory. If it exists there, the
simulator uses the local makefile instead of the default in the standard
location.

All makefiles have a section at the top that is safe to modify. Modifications
made outside this area can corrupt the UCB shared library creation process.

UNIX
For UNIX systems, list any additional C language source code files at the
end of the line that reads:

CSOURCES =

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-32 ni.com

Add any FORTRAN language source code files at the end of the line that
reads:

FSOURCES =

Windows
For PC systems, add all source code files (C or FORTRAN) to the line that
reads:

SOURCES =

Reusing Sources from the Previous Simulation
If a UCB shared library exists in the project directory before this process
starts, the simulator attempts to include all of the objects in the previously
existing shared library in the new one. This makes it possible to quickly
switch between different models that contain different UCBs.

Specifying Another Location for UCB Code
You can use the sim() command line option ucbcodeloc to specify a
location for user code that is different from the local directory. If you
supply this option, the simulator assumes that all UCB source files, as well
as the UCB shared library, are located in the directory specified with the
ucbcodeloc option. The exception is any source code file that has a
complete path name as its specification, in which case, the simulator looks
for the file there.

You also can set this location using SETSBDEFAULT. The keyword
ucbcodeloc is designed to support multiple engineers accessing the same
infrequently changed shared UCB library so that team members do not
need to keep local copies of the entire team UCB source. In this case, all
team members should have the following line in their startup.ms file:

setsbdefault {ucbcodeloc="/path_to_team_UCB_code"}

Compiling and Linking User Code
The simulator compiles each of the identified source code files,
if necessary, using make on all platforms (with a different,
platform-dependent, makefile on each platform). When the make
facility has determined that each source code file has been successfully
compiled, the source code objects are linked into the UCB shared library.
Any compile or link errors are reported by the simulator, which then
terminates.

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-33 SystemBuild User Guide

Windows
On Windows platforms, a dynamic link library (DLL) is created. Because
a DLL is a name-resolved standalone entity, all symbols referred to in the
user code must exist in the DLL before it can link. If a UCB calls a
user-supplied utility function that has not been made available to the
simulator in one of the ways described previously, the DLL will fail to link.

UNIX
On UNIX platforms, a shared library is created. Shared libraries are not
name resolved. Although the shared library is not expected to link
completely, it is your responsibility to make sure that all user-supplied code
is contained in the shared library. The simulator will verify that all UCB
routines are included in this library, but it cannot verify that user-supplied
utility routines are included in the shared library. If, during simulation, user
code attempts to call a non-existent function, the simulator immediately
stops executing with a dynamic linker error.

Supported Compilers
National Instruments tests the UCB capabilities of the simulator using the
compilers (and compiler versions) that are officially supported by National
Instruments. If an unsupported compiler is used to compile and link UCB
shared libraries, National Instruments cannot assist you with problems
encountered while compiling code, creating the UCB shared library, or any
run-time problems. The list of supported compilers is available in the
System Administrator Guide or at ni.com.

Debugging User Code
Follow these guidelines when debugging user code.

1. To debug user code in the simulation environment, compile and link
the code with debug information.

(UNIX) The code is compiled and linked with the debug information
automatically.

(Windows) You need to copy the makefile, makeucb.mk into the local
project directory, even if using the ucbcodeloc option. You can do
this with the following Xmath call:

copyfile "$SYSBLD/bin/makeucb.mk"

Edit makeucb.mk with a text editor, and ensure that the top portion of
the makefile contains the line:

DBG = Yes

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-34 ni.com

Next, create the UCB shared library using the linksim command.
When you eventually enter the debugger, this guarantees that the UCB
shared library is already be created and loaded into the simulator. For
more information on the linksim command, refer to the MATRIXx
Help.

2. From the Xmath command area, type the following command:

debug simexe

3. Call the sim() function normally, either from the Xmath command
line or from the Tools menu on the SuperBlock Editor.

When the simulator is invoked, a GUI dialog box appears.

Note Do not click OK in this dialog box until the debugging session is ready for it. Refer
to step 5.

(UNIX) You have to bring up the debugger and attach it to the running
process. Return to the Xmath GUI dialog, and notice the command
listed in the window. Execute that command at the OS command line.
This invokes the debugger and attaches it to the simulation process.

(Windows) On PC systems, an OS dialog box also opens, notifying you
that a debug exception has occurred and asking if you want to invoke
the debugging environment. Do so.

4. When you are in the debugging environment, do any initialization,
such as setting break points, data watch points, and so forth.

Note On SunOS and Solaris systems, it is important that you also execute the command
ignore USR1.

Remember that the names of the functions directly called by the
simulator generally (UNIX) have a trailing underscore or (Windows) are
in all capital letters due to the mixed C/FORTRAN language support
in the simulator.

5. After the debugging session is initialized, ensure that the simulator is
running by (UNIX) using the cont command on most debuggers or
(Windows) by pressing the <F5> key.

6. When the simulator is running, click OK in the Xmath GUI dialog. At
this point the simulator resumes, and you can continue the debugging
session.

Because the simulator does not terminate at the end of each simulation, you
can keep the debugging session open through multiple subsequent

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-35 SystemBuild User Guide

simulations, provided the UCB does not crash the simulator and you do not
issue the command undefine simexe in the Xmath command area.

Posting Error Indications
You can write messages from your UCB code, and SystemBuild provides
messages, as appropriate, at simulation time. These two mechanisms are
discussed in the following sections.

Writing User Messages to the Xmath Window
Use the function stdwrt() supplied by National Instruments in your C
or FORTRAN UCB to write messages to the Xmath window. stdwrt()
is a void function that takes one string argument containing the message to
be displayed in Xmath.

void stdwrt(char * message)

The prototype for this function is in the file MTXHOME/sysbld/src/
matsrc.h. Be sure to include this file in your C language file. The
following is a simple example of its use:

#include "matsrc.h"

int a = 1;

int b = 2;

 if (a != b)

 stdwrt("The Two values are not equal\n");

Notice that a newline character ends the string argument. stdwrt() does
not automatically add newline characters.

If you must write messages from your own FORTRAN subroutine, use
logical I/O units numbered 99 or higher. The following is a simple example:

CHARACTER*80 BUFFER

WRITE(BUFFER,10) RPAR(4),IPAR(3)

10 FORMAT('RPAR(4)=',1PE12.4,' and IPAR(3)=',I2)

CALL STDWRT(BUFFER)

Simulation Errors
At simulation time, extensive error checking is performed, and a set of
standard error messages is provided, which the UCB can use as well. The
numbers provided are message numbers for error reporting by UserCode
blocks. The status word IINFO(1) is provided to let a UCB return error

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-36 ni.com

information to the simulator program. If the UCB returns the value –2 in
this location, a generic error message is generated. But a UCB also can use
the following formula to have the simulator program post a specified
message:

Error Indication = -(10*M# + 2)

where 3 is the message number. These error indications are useful to
SystemBuild and its UCB technology. They are not compatible with
AutoCode. For example, to post the message Square Root of
negative number, the UCB simply returns –62 in the IINFO(1) status
word.

The following is a list of simulation errors:

• SIM_ERROR: Division by 0.0 produces infinity

If the second input vector to a divide block, u(NO + 1: 2: NO), contains
a zero value, then this simulation error occurs.

• SIM_ERROR: Raise 0.0 to a non-positive power.

A simulation error occurs when the input to an exponential block and
the constant power is less than or equal to zero.

• SIM_ERROR: Both arguments to ATAN2 are zero.

The output of the arctangent2 function is undefined when both
inputs are zero.

• SIM_ERROR: ASIN or ACOS argument out of range.

The input to the arcsine or arccosine function block must be in the
range from –1 to 1. The output of this function is in the range 0 to π.

• SIM_ERROR: Natural log of zero or negative number.

A simulation error occurs if any input to the log block is less than or
equal to zero.

• SIM_ERROR; Square root of negative number.

A simulation error occurs if any input to the square root block is
negative.

• SIM_ERROR: Incoming data not in range of table.

For the two-input system, no extrapolation is performed on evaluation
to extend the ranges of the inputs to the LinearInterp block. If either
input range is exceeded in the analysis of this block, an error occurs.

• SIM_ERROR: raise negative number to non-integer.

A simulation error occurs when the input to an exponential block
represents a floating point power and the constant is less than zero.

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-37 SystemBuild User Guide

• SIM_ERROR: Overflow in y= EXP(u) function

Quantity out of range of hardware.

Simulation API
The Simulation Application Programming Interface (SIMAPI) is a
collection of library routines that are accessible from UserCode blocks
(UCBs) during simulation to provide access to internal simulation
capabilities. It has the following classes of capabilities:

• Gathering UCB Reference Information

• Accessing and Modifying Variables

• Accessing Simulation Debugging Information, including information
about the state of the continuous integration

Note UCBs that take advantage of the SIMAPI capabilities are not transferable to the
AutoCode environment.

For C language UserCode blocks, adding a reference to the header file
simAPI.h provides access to the SIMAPI functionality.

This capability is not recommended for FORTRAN UCBs. If you attempt
SIMAPI access, it is your responsibility to make sure that the FORTRAN
code calls SIMAPI functions with a C language calling interface.

This document describes the SIMAPI at the time of publication. The most
current description can be found in the files simapi_ucbinfo.h,
simapi_rve.h and simapi_debug.h, all of which are located in the
SYSBLD/src directory. The environment variable $SYSBLD is available
within MATRIXx.

Gathering UCB Reference Information
The SIMAPI provides several functions to gather information about the
current UCB block reference and the environment in which it resides.
These functions are:

int SIMAPI_GetUCBBlockInfo(int *iinfo, SB **SBptr, BLK **BLKptr)

Provides access to data that allows the caller to find out information
about the instance of the UCB being called, as well as the SuperBlock
in which it exists.

int SIMAPI_GetBlockInputType(int *iinfo, int channel)

Returns the type of a specified block input.

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-38 ni.com

char *SIMAPI_GetBlockInputLabel(BLK *block, int channel, SB *parent)

Returns the label associated with a specified block input.

int SIMAPI_GetBlockOutputType(BLK *block, int channel)

Returns the type of a specified block output.

char *SIMAPI_GetBlockOutputLabel(BLK *block, int channel)

Returns the label associated with a specified block output.

char *SIMAPI_GetDefaultOutputLabel(BLK *block, int channel)

Returns the default label associated with a specified block output. This
default is used when you enter neither an output name nor an output
label for the specified channel.

char *SIMAPI_GetBlockName(BLK *block)

Returns the name of the block reference.

int SIMAPI_GetBlockId(BLK *block)

Returns the block ID of the block reference.

char *SIMAPI_GetSBName(SB *SuperBlock)

Returns the name of the SuperBlock reference.

To use these functions to access block information, first make a call to
SIMAPI_GetUCBBlockInfo(). This initializes the SB and BLK
structures that are used in subsequent calls to SIMAPI functions. After this
call has been made, pass these structures, as required, to other SIMAPI
functions. Any SIMAPI call that returns a character string allocates the
memory for that string as part of the SIMAPI call. You can free that
memory using the standard ‘C’ free() call if necessary.

Example 14-2 uses the SIMAPI to get the name of the currently executing
block reference.

Example 14-2 Getting the Name of the Currently Executing Block Reference

BLK *blk;

SB *sb;

char *name;

SIMAPI_GetUCBBlockInfo(iinfo, &sb, &blk);

name = SIMAPI_GetBlockName(blk);

Notice that BLK and SB are types defined in simAPI.h.

Example 14-3 uses the SIMAPI to get the label associated with output
number three of the current UCB reference.

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-39 SystemBuild User Guide

Example 14-3 Getting the Label Associated with a Specific Output

BLK *blk;

SB *sb;

char *name;

SIMAPI_GetUCBBlockInfo(iinfo, &sb, &blk);

name = SIMAPI_GetBlockOutputLabel(blk, 3);

Accessing and Modifying Variables
The SIMAPI also provides users the ability to access variable information
(%variable and ReadVariable/WriteVariable block), as well as to modify
their values. This feature provides the same capability as the runtime
variable editing (RVE) feature used in ISIM.

All of the variables in the model are ordered in a particular numeric
sequence from the first variable to the last. To find the ID of the last
variable, call the SIMAPI_GetNumVars() function. To keep
compatibility with the graphical RVE interface, the IDs for the variables
range from 1 to the number of variables instead of the standard C language
scheme of numbering items from 0.

The functions provided by this capability are:

long SIMAPI_GetNumVars();

Returns the number of variables (ReadVariable/WriteVariable block
and %variables) used in the model, regardless of their “editability.”

char *SIMAPI_GetVarName(long varnum);

Returns a character string representing the name of the variable
varnum from the variable list.

char *SIMAPI_GetVarPartition(long varnum);

Returns a character string representing the Xmath partition in which
variable varnum was initialized.

long SIMAPI_IsVarEditable(long varnum);

Returns the editable status of variable varnum.

char *SIMAPI_GetVarDatatypeName(long varnum);

Returns a string representing the name of the data type of variable
varnum.

char *SIMAPI_GetVarUsertypeName(long varnum);

Returns a string representing the name of the user data type of variable
varnum. Returns NULL if no user type is assigned to that variable.

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-40 ni.com

void SIMAPI_GetVarDimension(long varnum, long *dim);

Returns the dimensions of a selected variable. Any dimension not used
by the variable is set to 0 (that is, if the variable is a 3 × 4 array, this
array is set to [3,4,0,0,0,0]). Scalars are treated as 1 × 1 arrays.

long SIMAPI_GetVarStorageSize(long varnum);

Returns the size (in bytes) needed to store a variable value.

SIMAPI_StorageType SIMAPI_GetVarStorageType(long varnum);

Returns the method by which multi-dimensional data is stored, either
BY_ROWS or BY_COLUMNS, which are defined in simapi_rve.h

long SIMAPI_GetVarIndexByName(char *varname);

Returns the index of the variable whose name is varname.

long SIMAPI_GetVarData(long varnum, void *data, char *error_string);

Returns the value of the selected variable. The data pointer is allocated
by this routine and is of size SIMAPI_GetVarStorageSize(). The
data is of whatever type is specified by
SIMAPI_GetVarDatatypeNameblock().

long SIMAPI_PutVarData(long varnum, void *data);

Edits the selected variable. Variable edits are not completed until the
edit is flushed.

long SIMAPI_FlushVars(long *varlist);

Flushes selected variables. This completes the editing process
for these variables. This routine expects a list of size
SIMAPI_GetNumVars(). For each entry in this list with a
non-zero value, the corresponding variable is flushed—the edited
value is transferred to the simulation—assuming it had previously been
edited. After this operation is complete, the edit can no longer be
undone.

void SIMAPI_ResetVar(long varnum);

Cancels an edit on the selected variable. Undoes the effects of
SIMAPI_PutVarData().

When a variable edit has been flushed by SIMAPI_FlushVars(), it
cannot be canceled.

Example 14-4 uses the SIMAPI to retrieve the name of the third variable.

Example 14-4 Retrieving the Name of a Variable

char *varname;

varname = SIMAPI_GetVarName(3);

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-41 SystemBuild User Guide

Example 14-5 uses the SIMAPI to change the variable of a known scalar
variable named myvar to 2.

Example 14-5 Changing the Value of a Variable

longvarnum;

double myval_value = 20.0;

longretval;

long*varlist;

varnum = SIMAPI_GetVarIndexByName("myvar");

 if (varname != 0) {

 retval = SIMAPI_PutVarData(varnum,&myval_value);

 if (retval != 0) {

varlist = calloc(SIMAPI_GetNumVars(),sizeof(long));

 varlist[varnum-1] = 1;

 retval = SIMAPI_FlushVars(varlist);

 }

 }

Accessing Simulation Debugging Information
The SIMAPI provides access to simulation debugging information so that
you can monitor certain internal computations in a SystemBuild model
during the simulation.

The set of functions that provide access to the SystemBuild simulation
signals are prototyped in a header file simapi_debug.h. This file is
located in the SYSBLD/src directory. To access the debugging features, the
header file simAPI.h must be referenced in the C language UserCode
blocks, not simapi_debug.h.

The following variables are input arguments to functions listed in this
section:

The following variables are output arguments to functions listed in this
section:

extinp_index extout_index impout_index impout_index

is_available IS_Jacobian state_index status

deriv_value extout_value n_ext_inputs state_name

extinp_name iinfo n_ext_outputs state_value

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-42 ni.com

Notice that all functions described in this section return an integer status
value:

SIMAPI_OK = 0, /* Call was successful */

SIMAPI_Unsuccesful = 1, /* Call failed */

The following sections list the functions available through the debugging
interface. In the usage discussions, the function prefix SIMAPI_ has been
omitted from the descriptions for brevity.

Functions to Initialize and Terminate Debug Data
SIMAPI_InitializeUserDebug(void);

SIMAPI_TerminateUserDebug(void);

The function InitializeUserDebug() must be called in the INIT
section of the UserCode block before any other debugging SIMAPI calls.
This call performs internal initialization of the debugging capability.

The function TerminateUserDebug() must be called in the FINAL
section of the UserCode block to allow the simulator to terminate and
re-initialize the debugging capabilities to prepare the debugging
environment for subsequent debug simulations.

Functions to Return the Dimensions of the
SystemBuild Model
SIMAPI_GetStateDimension (int *n_states);

SIMAPI_GetImplicitOutputDimension (int *n_imp_outputs);

SIMAPI_GetExternalInputDimension (int *n_ext_inputs);

SIMAPI_GetExternalOutputDimension (int *n_ext_outputs);

First call the *Dimension access functions to get the dimensions of signals
in the model. You can call the *Dimension functions anywhere. Use the
INIT section for greater efficiency because the STATE and OUTPUT
sections of the UserCode block are called many times throughout the
simulation.

extout_name impout_name n_imp_outputs n_ext_inputs

extinp_value impout_value n_states

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-43 SystemBuild User Guide

Functions to Return Signal Names of the
SystemBuild Model

SIMAPI_GetStateName (int state_index, char **state_name);

SIMAPI_GetImplicitOutputName(int impout_index, char **impout_name);

SIMAPI_GetExternalInputName (int extinp_index, char **extinp_name);

SIMAPI_GetExternalOutputName(int extout_index, char **extout_name);

The *Name functions are called to access the name of each signal in the
system. Each function is called with the integer index of the associated
signal such that 0<=i<n, where n is the dimension of the signal. Notice that
this addressing scheme is done in C style. The memory allocation
management for the string variables is done by the simulator. The *Name
functions can be called anywhere. Use the INIT section for efficiency.

Note The memory needed for the strings is allocated by the simulator, which cleans it up
at the end of the simulation during the call to TerminateUserDebug(). You do not need
to free this memory.

Functions to Return Signal Values of the
SystemBuild Model

SIMAPI_GetStateValue (int state_index, double *state_value);

SIMAPI_GetStateDerivativeValue(int state_index, double *deriv_value);

SIMAPI_GetImplicitOutputValue (int impout_index, double *impout_value);

SIMAPI_GetExternalInputValue (int extinp_index, double *extinp_value);

SIMAPI_GetExternalOutputValue (int extout_index, double *extout_value);

The GetStateValue() function can be called in any section of the
UserCode block. To obtain state values during a converged integration
algorithm pass, it should be called in the OUTPUT section when the
CONVERGED flag is TRUE.

The GetStateDerivativeValue() function should be called in the
STATE section of the UserCode block to access the state derivatives during
intermediate integration algorithm evaluations.

The GetExternalInputValue() function can be called in the STATE
or OUTPUT section of the UserCode block.

The GetImplicitOutputValue()and GetExternalOutputValue()
functions are called in the OUTPUT section of the UserCode block.

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-44 ni.com

Functions to Return the Jacobians of the
SystemBuild Model

SIMAPI_GetOperatingPointJacobian(int *iinfo, int *is_available,
double **OP_Jacobian);

SIMAPI_GetImplicitSolverJacobian(int *iinfo, int *is_available,
double **IS_Jacobian);

The GetOperatingPointJacobian() and
GetImplicitSolverJacobian() functions are used to access the
Jacobian of the model during these computations. In the case of the
Operating Point Jacobian, the matrix has dimensions (nyimp) × (nyimp).

The dimension of the Implicit Solver Jacobian is
(nx + nyimp) × (nx + nyimp),where nx is the number of states in the model, and
nyimp is the number of implicit (algebraic loop) variables in the model. The
number of algebraic loops in the model is determined by the Simulation
analyzer. Refer to the analyze() function for how to obtain this value.

The dimensions of the Jacobian matrices are as follows:

The IS_Jacobian is computed with respect to the variable ordering:

[states; imp_outputs]

All matrices are stored in FORTRAN storage style—that is, columnwise
vector storage.

Function to Return the Simulation Status of simexe()
SIMAPI_GetSimStatus(int *iinfo, SimStatus *status);

GetSimStatus() is called to determine what the simulation executable
is doing at any given instant. This function provides information about the
various computational modes of the simulator. The status flags are
maintained in the following data structure (refer to simapi_debug.h):

typedef struct _SimStatus {

 SimulationMode simulationmode;

 StateUpdate stateupdate;

}SimStatus;

OP_Jacobian: (n_imp_outputs) × (n_imp_outputs)

IS_Jacobian: (n_states + n_imp_outputs) × (n_states + n_imp_outputs)

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-45 SystemBuild User Guide

The enumerated data structure SimulationMode can assume the
following values:

integrate, /* (= 0) Integration Update maybe converged states */

continuous,/* (= 1) Continuous Subsystem Update */

discrete, /* (= 2) Discrete Subsystem Update */

trigger, /* (= 3) Triggered Subsystem Update */

jacobian, /* (= 4) Jacobian Update */

opoint, /* (= 5) Operating Point Update for algebraic loops */

linearize, /* (= 6) Lin Update */

reset, /* (= 7) Reset Update */

converge, /* (= 8) Integration Update with converged states */

monitor, /* (= 9) Monit Update */

event /* (=10) Event Handle Update */

The enumerated data structure StateUpdate can assume the following
values:

typedef enum

{ skip_xdot,

 compute_xdot,

 } StateUpdate;

Thus the SimulationMode data structure provides a snapshot of what the
simulator is doing at any given instant—that is, function call to the
UserCode block. Based on this information, you can decide which
simulation data to access.

SIMAPI Debug UserCode Block Example
An example UserCode block that illustrates the usage of the SIMAPI
debugging features is provided with the MATRIXx installation.
Example 14-6 leads you through it.

Example 14-6 Using the Debugging Feature

To run the UCB example, complete the following steps:

1. Copy usrdebug.c to your local directory.

copyfile "$SYSBLD/src/usrdebug.c"

2. Load and edit a SystemBuild model you want to debug.

3. In the SuperBlock Editor, drag and drop a Sequencer block from the
Software Constructs palette to the model. Place the Sequencer to the
right of all the blocks in the SuperBlock.

Chapter 14 UserCode Blocks

SystemBuild User Guide 14-46 ni.com

4. Drag a UserCode block from the User Programmed palette, and place
it to the right of the Sequencer block.

This ensures that the UserCode block is the last block to execute in the
block update sequence.

5. In the UserCode Block dialog, set the number of inputs, outputs, and
states equal to 1.

Even though the UserCode block does not have any states, setting the
number of states equal to 1 ensures that the block is executed during
the STATE update pass of the simulator.

6. Set additional parameters as indicated:

• In the File Name field, type usrdebug.c. In the Function Name
field, type usrdebug.

• Set the Number of Integer Parameters to 8.

The dialog box now displays an array of eight zeros as the default
values of the integer parameters.

• Set the values of the Integer Parameters as shown in the following
table, where the integer parameters array is referred to as
IPAR[1:8]). Because the IPAR values are all 1, an easy way to
enter them is to type ones(1,8) in the Integer Parameters field.
Click OK.

This table also shows the files that are created for the purpose of
writing the relevant data.

7. Simulate your model.

8. Examine the data in the files listed in the previous table.

Parameter Purpose File

IPAR[1] = 1 Debugging feature for the UserCode block sysinfo.dat

IPAR[2] = 1 Enables state data states.dat

IPAR[3] = 1 Enables state derivative data derivs.dat

IPAR[4] = 1 Enables implicit output data impouts.dat

IPAR[5] = 1 Enables external input data extinps.dat

IPAR[6] = 1 Enables external output data extouts.dat

IPAR[7] = 1 Enables Operating Point Jacobian data opjac.dat

IPAR[8] = 1 Enables Implicit Solver Jacobian data isjac.dat

Chapter 14 UserCode Blocks

© National Instruments Corporation 14-47 SystemBuild User Guide

SIMAPI Debugging Notes
• To turn off the debugging of a particular type of variable, set the

appropriate IPAR[] element to zero.

• For the contents of each file and the data format used for writing the
results to the files, refer to the relevant fprintf() statements in the
source code usrdebug.c source code.

• For some models with a large number of states and many steps of
simulations, some of the data files can become very large. Implicit
Solver Jacobians can especially become large due to repeated
evaluations of the Jacobian inside the Implicit Solvers
(ialg= 6 and 9).

• The example provided in usrdebug.c is an application adequate if
you want to write the simulation data to a file and inspect the results.
For more advanced applications, you are encouraged to read and freely
reuse the source code of usrdebug.c for writing your own UserCode
block debugging applications.

© National Instruments Corporation 15-1 SystemBuild User Guide

15
Fixed-Point Arithmetic

This chapter describes SystemBuild fixed-point arithmetic. This feature
emulates two’s complement binary arithmetic, allowing systems running
code generated by AutoCode—for example, in embedded processors—or
RealSim to interface directly with inexpensive processors that do not
support floating-point math.

The following SystemBuild blocks support fixed-point arithmetic.

Fixed-point blocks are compatible with other SystemBuild blocks, the
simulator, and other features of SystemBuild. Thus, models may contain
floating-point, integer, logical, and fixed-point components in any mixture.

Fixed-point arithmetic only operates in discrete SystemBuild models. That
is, the SuperBlocks in the part of the model using fixed-point must be
discrete free-running, enabled, triggered, or procedure—never continuous.

Fixed-point arithmetic differs from floating-point arithmetic in several
ways:

• Addition and multiplication are not associative.

• Overflow can occur if the output number is too big for the data type.

• Questions of precision and significance arise because of the fixed word
sizes and ranges of the data types.

AbsoluteValue BilinearInterp Constant ConstantInterp

Gain CrossProduct DataStore DataPathSwitch

DeadBand DotProduct ElementDivide ElementProduct

Limiter LinearInterp LogicalOperator MatrixTranspose

Preload ReadVariable RelationalOperator Saturation

ScalarGain ShiftRegister Summer TimeDelay

TypeConversion WriteVariable

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-2 ni.com

The SystemBuild user interface provides several access points to
fixed-point information:

• The SystemBuild Connection Editor reports on the data types of
fixed-point signals.

• The Inputs tab of the SuperBlock Properties dialog box allows you to
specify fixed-point input data types.

• The Outputs tab of the SuperBlock Properties dialog box allows you to
specify fixed-point output data types.

• The Gain and ScalarGain block dialogs allow you to specify a radix
position for the gain parameter.

• User-defined data types, also called UserTypes, provide an aliasing
capability for SystemBuild data types. It is possible to assign a name
that is relevant to your problem to a data type. Although UserType
support is a general SystemBuild feature, it is particularly convenient
for fixed-point arithmetic, where you may need to switch data types
after each simulation. For more information on UserTypes, refer to the
User-Defined Data Types (UserTypes) section, and, for a full
treatment of data types, refer to the Specifying Data Types section of
Chapter 5, Blocks.

• For simulation or code generation, the SystemBuild Analyzer
performs all necessary data type checking, based on data type checking
rules tabularized in the Fixed-point Blocks and I/O Data Type Rules
section of this chapter. For operation of the Analyzer, refer to the Using
the analyze() Function section of Chapter 8, Simulator Basics.

• The block set for use with fixed-point numbers includes arithmetic,
logical, and piecewise linear blocks. For the complete list, refer to
Table 15-1.

AutoCode provides full support for fixed-point arithmetic in generated
code. Refer to the Fixed-point Arithmetic section of the AutoCode User
Guide.

Introduction to Fixed-Point Arithmetic
For computation with real numbers, floating-point representation and
arithmetic is the usual approach. However, floating-point calculation is
slow compared to integer calculations. Coprocessors can speed up
floating-point calculations, but integer arithmetic is still faster in most
cases. Libraries that emulate coprocessors are also notoriously slow.

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-3 SystemBuild User Guide

Fixed-point representation and arithmetic is an alternative approach that
takes advantage of processor instructions. This computational method and
corresponding notation uses scaled integers to represent floating-point
numbers, thereby avoiding the overhead of floating-point calculations.

The remainder of this chapter discusses the issues involved in simulating
models and generating fixed-point C code from a SystemBuild model with
integer data types and scaling and the options available to produce
fixed-point code.

Fixed-Point Number Representation
Fixed-point arithmetic uses integer data types, in which a fixed number of
the bits (fractional part) are used to represent the fractional component of a
number and the rest (integer part) are used to hold the integer component.
This allows real numbers (or an approximation of them) to be stored in
integers. Fixed-point numbers are restricted to 8-bit, 16-bit, and 32-bit
representations. This limitation is referred to as word size. Thus, the
possible word sizes for fixed-point numbers are 8, 16, and 32 bits.

Throughout this chapter, m refers to the number of bits in the fractional part
(also referred to as the radix position), and n denotes the number of bits in
the integer part. Thus, a fixed-point number word size is n + m + 1 if it is
signed or n + m if unsigned. The precision of a fixed-point number is 2–m,
its maximum significance is 2n–1, and the range of the fractional part is
[0, 1–2–m]. The range of an unsigned fixed-point number is [0,2n–2–m]. The
range of a signed fixed-point number is [–2n, 2n–2–m].

Figure 15-1 shows an 8-bit unsigned fixed-point number with radix
position of 4, meaning that four bits are for the fractional part and four bits
are for the integer part. The precision is 1/16. The range of the fractional
part is [0, 15/16]. The maximum significance of the number is 15, and the
range of the number is [0, 15 15/16].

Figure 15-2 shows an 8-bit signed fixed-point number with radix position
of 6. The precision is 1/64, the range of the fractional part is [0,63/64], the
maximum significance is 1, and the range of the number is [–2,1 63/64].

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-4 ni.com

Figure 15-1. An Unsigned Fixed-Point Number with 8 Bits and Radix Position 4

Figure 15-2. A Signed Fixed-Point Number with 8 Bits and Radix Position of 6

When the radix position is zero, note that the example in Figure 15-1 is an
unsigned integer with range [0,255], and the example in Figure 15-2 is a
signed integer with range [−128, 127].

The scaling referred to in fixed-point arithmetic is directly related to the
radix position, m, of the fixed-point data types. The scale factor is 2m. As
an example, the number 1.25 is stored as 00000101 in an unsigned 8-bit
fixed-point data type with (n = 6, m = 2). In regular two’s complement
integer format, this binary number is equivalent to the decimal number 5,
which is 1.25 times the scale factor 4. Since the scaling is implicit in the
radix position, only the latter will be mentioned.

Two different fixed-point numbers cannot be operated on without knowing
their radix positions. Were the word size limitations not a constraint, the
following rules would provide the result radix position, word length, sign
(that is, the result data type), and required operand alignment strategy for
maximum precision in the basic algebraic operations, when only two
operands are involved.

1 11 1 1 1 1 1

Fractional Part = mSize of Integer Part = n

Radix Position (= 4)

Precision = 2-m = 1/16
Range = [0, 15/16]

Maximum significance
of Integer Part = 2n - 1= 15
Range of an 8-bit number
with radix position of
4=[0, 15 15/16]

Radix

± Sign bit

Most significant
bit (integer part)

Size of fractional part = m

Precision= 2-m = 1/64
Range of fractional part = [0, 63/64]
Range of signed 8-bit number with
radix position of 6 = [-2, 1 63/64] Position (= 6)

1 1 1 1 1 1 1 1

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-5 SystemBuild User Guide

Notice that these rules are the equivalent of decimal point alignment in
decimal arithmetic.

In practice, the word size is constrained to values such as 8, 16, or 32, which
may cause serious problems for the rules above. For example, the potential
left shift involved in addition and subtraction can result in an overflow1 if
it causes a significant bit to “fall off” the left (most significant) side of the
word boundary. A similar difficulty can arise in multiplication if the sum of
operand radix positions plus the number of bits necessary for the integer
part of the result is greater than the allowable product word size.

Moreover, you frequently determine a desired data type for the result of the
basic fixed-point operations. Such a determination might be a result of test
data, experience, or previous simulations (fixed or float), which would
impact the radix position and alignment rules discussed above.

For maximum flexibility, every block that supports fixed-point arithmetic
allows you to specify an output data type. In most cases, such output data
type stipulation resolves operation data type issues appropriately.
Nevertheless, there are cases where more data type information is required
before the fixed-point operation is fully defined. These cases are explained
in the following section.

Now consider basic fixed-point operations. In the following examples an
unsigned fixed-point number is represented as an ordered pair (i, rn), where
i is the integer and n is the radix position. For example, (37, r4) is a

Addition and
Subtraction

The operand with the smaller radix position must be
aligned with the larger radix position (this involves a
left shift of the bit pattern), and the result radix
position is the larger of the operand radix positions.

Multiplication The result radix position is the sum of the radix
positions of the operands. No alignment is required
for the operands.

Division The result radix position is the radix position of the
numerator minus the radix position of the
denominator. No alignment is required for the
operands.

1 Overflow is defined as loss of significance. That is, losing bits in the integer part of the number. The term underflow is used
to mean overflow on a negative number.

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-6 ni.com

fixed-point number with integer 37 and radix position 4 (=2.3125). For
characterizing signed numbers you employ the triplet (i, rn, sign).

Conversion Between Fixed-Point Numbers
You can convert one fixed-point data type to another using a signal
TypeConversion block. Algorithmically, if the word size is not changed,
this operation amounts to a change in the radix position.

In software generated by AutoCode, to change the radix position of a
number, you use multiplication or division by bitwise-shifting.

To increase the radix position of a fixed-point value by one, the integer is
multiplied by 2 by shifting the integer one position to the left. Notice that
this operation overflows if the result cannot fit in the number of bits
available. When this happens, a significant bit “falls off” the left side of the
number. A significant bit is 1 for an unsigned or signed positive and 0 for a
signed negative number.

Similarly, to reduce the radix position of a fixed-point value by one the
integer is divided by 2 using a bitwise right shift. In this instance, loss of
precision occurs if the least significant bit of the stored integer is a
significant bit before the shift. On many computers, right shifting a negative
integer n positions yields a different result from dividing it by 2n. In
SystemBuild and AutoCode, the division standard is implemented,
although AutoCode can be configured to use the shifting standard instead.
The bit shifted into the most significant bit location of the integer is zero for
unsigned numbers and equal to the sign bit for signed numbers.

Example 15-1 shows conversion between fixed-point numbers of different
radix position.

Example 15-1 Conversion of Fixed-Point Numbers

0010^0101 (n1 = (37, r4), decimal value: 2.3125)

^ indicates the imaginary position of the radix position within the binary
data.

Align to a radix position of 6 (that is, shift left n1 by 2):

10^010100 (n2 =(148,r6), decimal value: 2.3125)

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-7 SystemBuild User Guide

Addition and Subtraction
For fixed-point addition and subtraction, the radix positions of the two
operands are aligned, and then the numbers are added or subtracted,
respectively. The resulting radix position stays in the same position.
Example 15-2 adds the fixed-point number n1 = (37, r4) and fixed-point
number n2 = (65, r1) to produce the fixed-point result number n3 with radix
position 2 using 8-bit unsigned variables.

Example 15-2 Addition of Fixed-Point Numbers

In binary representation:

0010^0101 (n1 = (37, r4), decimal value: 2.3125)

+

0100000^1 (n2 = (65, r1), decimal value: 32.5)

Align the radix positions of n1 and n2 to the radix position of the result
before adding—that is, shift n1 right by 2 bits, and shift n2 left by 1 bit.
Place the aligned results in n1' and n2'. Then perform the addition:

000010^01 (n1' = (9, r2), decimal value: 2.25)*

+

100000^10 (n2' = (130, r2), decimal value: 32.50)

100010^11 (n3 = (139, r2), decimal value: 34.75)

Loss of precision occurred while shifting n1 to n1'.

Multiplication
Multiplication of fixed-point numbers does not require pre-alignment of
radix positions. The radix position of the product is the sum of the radix
positions of the operands, and the stored value of the result is the product
of the stored values of the operands. The length of the result of a
multiplication can be as great as the sum of the lengths of the operands.
Because the result of a multiplication may not fit into a variable of the same
length as the operands, widening multiplication is performed in
SystemBuild and AutoCode for the multiplication operation to produce an
internal result that holds the full product. For example, if two 8-bit
variables are multiplied, the internal result is a 16-bit variable. If two 16-bit
variables are multiplied, the internal result is a 32-bit variable. This internal
result is then converted to the desired fixed-point data type with possible
loss of precision (clipping of the least significant bits), and/or loss of
significance (clipping of the most significant bits). Use of an extended

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-8 ni.com

internal data type avoids overflow of the multiplication and allows
overflows to be corrected before the output data type is applied. Because
64-bit data types are not supported in C or Ada, extended internal results
are stored using two 32-bit data types.

Example 15-3 illustrates multiplication of fixed-point number n1 = (37, r4)
and fixed-point number n2 = (65, r1) to produce fixed-point result number
n3 with radix position 2 using 8-bit unsigned variables and a 16-bit
intermediate result.

Example 15-3 Multiplication of Fixed-Point Numbers of Different Radix Positions

0010^0101 (n1 = (37, r4), decimal value: 2.3125)

*

0100000^1 (n2 = (65, r1), decimal value: 32.5)

00001001011^00101 (n3' = (2405, r5), decimal value:

75.15625)

Align the radix position of n3' to the radix position of the result (that is,
shift n3' right by 3 bits). Place the aligned result in n3:

1001011^00 (n3 = (300, r2), decimal value: 75.0)

Division
Division of fixed-point numbers does not require pre-alignment of radix
positions. The radix position of the quotient is the radix position of the
dividend minus the radix position of the divisor. The stored value of the
result is the integer division of the stored values of the operands.
Depending on the processor, narrowing division may be performed
internally in the division operation, meaning that a dividend is twice the
length of the divisor, and the result has the same word length as the divisor.
The benefit of narrowing division is that the dividend can be left-shifted to
increase its radix position before the division to give a result with the
maximum possible precision. Example 15-4 illustrates division of
fixed-point number n1 = (128, r4) by fixed-point number n2 = (224, r5) to
produce the fixed-point result number with a radix position of 7 using 8-bit
unsigned variables and a 16-bit internal variable.

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-9 SystemBuild User Guide

Example 15-4 Division of Fixed-Point Numbers of Different Radix Positions

1000^0000 (n1 = (128, r4), decimal value: 8.0)

Left shift the dividend to increase its radix position to:

1000^000000000000 (n1' = (32768, r12), decimal value: 8.0)

÷
111^00000 (n2 = (224, r5), decimal value: 7.0)

000000001^0010010 (n3'=(146, r7), decimal value: 1.140625)

Store the result in an 8-bit unsigned variable n3:

1^0010010 (n3 = (146, r7), decimal value: 1.140625)

Relational Operations
For comparing two fixed-point numbers of the same word size, the number
with the smaller radix position—that is, the number with the lower
precision—is aligned with the number with the larger radix position, then
the numbers are subtracted. The result is a logical value with 1 indicating
that the comparison is TRUE and 0 indicating that it is FALSE.
Example 15-5 shows greater-than comparison of fixed-point number
n1 = (25, r3) and fixed-point number n2 = (17, r1) using 8-bit unsigned
variables.

Example 15-5 Relational Comparisons

In binary representation:

00011^001 (n1 =(25, r3), decimal value: 3.125)

>

0001000^1 (n2 = (17, r1), decimal value: 8.5)

Align the radix position of n2 to the radix position of n1 before
comparing—that is, shift n2 left by 2 bits. Place the aligned results in n2':

00011^001 (n1 =(25, r3), decimal value: 3.125)

>

10000^100 (n2' = (136, r3), decimal value: 8.5)

FALSE

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-10 ni.com

Overflow
An overflow occurs when the result of the operation is too large to fit in
the number of bits available. Overflow protection is the ability to detect
and correct overflows and underflows within fixed-point calculations.
If overflow protection is enabled, the numeric results exhibit saturation.
If overflow protection is disabled, the numeric results show that a wrap
occurs.

If a fixed-point-compatible block performs numeric computations, you
have the option of enabling fixed-point protection for that block alone. Go
to the Outputs tab of the block dialog, and enable the Overflow Protection
checkbox. The following blocks have this option: BilinearInterp,
ConstantInterp, Gain, CrossProduct, DotProduct, ElementDivide,
ElementProduct, LinearInterp, LogicalOperator, MatrixTranspose,
Preload, ScalarGain, Summer, and TypeConversion.

Overflow can be detected efficiently in assembly code by examining the
processor status flags, but in C these flags are not available, and you must
test results for consistency. Example 15-6 shows overflow in the context of
conversion of fixed-point number (32, r4) to a fixed-point number with
radix position of 7.

Example 15-6 Conversion of Fixed-Point Number with Overflow Protection

0010^0000 (n1 = (32, r4), decimal value: 2.0)

Align to a radix position of 7 (that is, shift left n1 by 3):

0^0000000 (n2 = [0, r7], decimal value: 0.0)*

Correct overflow (that is, use maximum number possible):

1^1111111 (n2 = (255, r7), decimal value: 1.9921875)

Overflow has occurred while left shifting n1.

Example 15-7 shows addition of the fixed-point number n1 = (249, r4) and
the fixed-point number n2 = (7, r3) to produce a fixed-point result number
with a radix position of 4 using 8-bit unsigned variables. Overflow
protection is provided.

Example 15-7 Addition with Overflow Protection

1111^1001 (n1 =(249, r4), decimal value: 15.5625)

+

00000^111 (n2 = (7, r3), decimal value: 0.875)

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-11 SystemBuild User Guide

Align the radix position of n2 to the radix position of the result before
adding (that is, shift n2 left by 1 bit). Place the aligned result in n2':

1111^1001 (n1' =n1= (249, r4), decimal value: 15.5625)

+

0000^1110 (n2' = (12, r4), decimal value: 0.875)

10000^0111 (n3' = (7, r4), decimal value: 0.4375)*

Correct overflow (that is, use maximum number possible):

1111^1111 (n3 = (255, r4), decimal value: 15.9375)

Overflow has occurred while adding n1' and n2'.

SystemBuild Fixed-Point

User Interface
If you are the user of fixed-point math, you proceed much as you do in the
traditional SystemBuild paradigm, selecting, placing, parameterizing, and
connecting blocks. Particular differences are the emphasis placed on
assigning data types, and its influence on the ranges and precisions of data
values. Two places are provided for specifying fixed-point data:

• SuperBlock Properties Dialog, Inputs Tab—The Input Data Type
field is a combo box that provides a complete list of choices. Click the
arrow until the vertical list appears, and then move the mouse down to
select the appropriate data type. Release the mouse button. You can
add the Input Radix as required.

• Block Dialog—The Output Data Type is a combo box. Click the arrow
until the vertical list appears, and then move the mouse down to select
the appropriate data type. Release the mouse button. You can add the
Radix as required.

In both dialogs, you also can type a user-defined data type or UserType.
This method is described in the User-Defined Data Types (UserTypes)
section of this chapter.

Notice that Float (real floating-point numbers) is the default setting for
inputs and outputs of the blocks discussed in this chapter.

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-12 ni.com

Simulator
For simulating from the Xmath command area, use the fixpt keyword to
invoke fixed-point arithmetic. For simulating from the Simulation
Parameters dialog, set the Sim Type field to a fixed-point data type. The
fixpt keyword or Sim Type field is useful for comparisons and for
studying the effect of quantization. Run a simulation with fixpt off, and
then with it on. Compare the results.

If fixpt is set, you also can use the fixpt_round keyword. If TRUE,
results of fixed-point calculations are quantized by rounding to the nearest
fixed point number and rounding away from zero if at a mid-point. If
fixpt_round = 0, results of fixed-point calculations are quantized by
truncation. The default is 0. If fixpt is not set, the fixpt_round keyword
has no effect.

Notice that whenever fixpt is set:

• Data type checking is always on.

• External inputs are always rounded.

• Parameters are rounded, and their data types are not directly specified
but are derived from the block type.

• Saturation arithmetic is used. Values are clipped with no wrapping.

• Calculation quantization is controlled by the fixpt_round keyword.

Building a Model and Demonstrating Overflow
When the size of a value becomes too large to fit in the data type, overflow
has occurred. In Figure 15-2, trying to place a value ≥16 in the register that
holds the number causes overflow. In Figure 15-2, attempting to place a
number ≥ +2 or < –2 in the register similarly overflows.

Rather than showing garbage when a value has overflowed, the simulator
returns the extremal number for the given output data type (positive or
negative depending on whether the number that overflowed was positive or
negative). This is known as Saturation Arithmetic. In SystemBuild
simulation, you can clearly see the effects of overflow by building a simple
one-block model. Example 15-8 shows this.

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-13 SystemBuild User Guide

Example 15-8 Demonstrating Fixed-Point Arithmetic and Overflow

1. Create a discrete free-running SuperBlock. Name it Test. Give it
two inputs and one output. The exact Sampling Period does not matter.
Accept the default value of 0.1.

2. Inside the SuperBlock place an ElementProduct block. Connect two
external inputs to the inputs of the block, and connect the output to an
external output. This model is shown in the following figure.

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-14 ni.com

3. Double-click in the header area of the diagram to invoke the
SuperBlock Properties dialog. On the Inputs tab, change the data type
of both inputs to Signed Byte.

Refer to Figure 15-3. This step is required to change the default input
data type (Float) to the needed fixed data type. Observe the bottom line
of the dialog, where Minimum, Maximum, Precision, Scale Factor,
and Mnemonic (SB0) are shown. Notice that the range [minimum,
maximum] is [–128, 127].

Figure 15-3. SuperBlock Dialog Box with Input Types Shown

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-15 SystemBuild User Guide

4. Select the block, and press <Enter> or <Return> to raise its block
dialog. On the Outputs tab, select Signed Byte from the Output Data
Type combo box on the right. Refer to Figure 15-4.

Figure 15-4. Outputs Tab with Signed Byte Chosen

5. Try a simulation without fixpt asserted. From the Xmath command
area, type:

t = [0:0.1:10]';

u = [2*t,t];

y = sim("Test",t,u,{graph});

Refer to Figure 15-5 for the way the plot should look. The range of the
y output is [0, 200], and, as shown in the Output block dialog box in
Figure 15-4, that is outside the range of the output data type, SB0.
However, the fixpt keyword is not activated. Therefore floating-point
arithmetic is performed without the absolute fixed-point limitations on
the output.

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-16 ni.com

Figure 15-5. Fixed-Point Plot without Overflow

6. Try another simulation, this time with fixpt asserted:

y = sim("Test",t,u,{graph,fixpt});

The plot should look like Figure 15-6.

Figure 15-6. Fixed-Point Plot with Overflow

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-17 SystemBuild User Guide

Observe what is happening here. The value increases until 127, the
maximum number for the SB0 data type, is reached, then it flattens out.
The range of output values for the simulation run would be [0, 200],
which is outside the range of the SB0 output data type as seen in
Figure 15-4. SystemBuild responds to a data out-of-range (overflow),
by truncating the output value at the extremal range point. If the output
value stops overflowing the output data type, the simulation stops
returning maximal values.

Comparing Fixed- and Floating-Point Numbers
Example 15-9 shows a way to compare fixed- and floating-point numbers.
One way to perform a quantitative comparison is to convert the fixed-point
number to floating-point and then subtract it from a floating point input of
the same value.

Example 15-9 Comparing Fixed- and Floating-Point Numbers

You are going to build a model that accepts the same sine-wave input on
two different pins. One of the inputs (topmost) is kept in floating point
format and run to the positive side of a summing junction. The other input
is changed to SB6 (Signed Byte, Radix Position 6) and then changed
directly back to floating point. The second input is then fed to the minus
side of the summer. Thus, when the output is plotted, it shows the difference
between the floating-point input and its fixed-point form.

Complete the following stpes to create a model to compare fixed- and
floating-point numbers:

1. Create a new SuperBlock. Name it test1. Make it discrete and specify
two inputs and one output.

2. From the Algebraic palette of the Palette Browser, drag two
TypeConversion blocks and a Summer block into the SuperBlock.
Create the model shown in Figure 15-7.

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-18 ni.com

Figure 15-7. Example Showing How to Compare Fixed and Floating Types;
SB0 Case Shown

3. Raise the TypeConversion Block dialog box for the first block. On the
Parameters tab, change the Output Type from Integer to Signed Byte.

This block accepts a floating-point signal and produces a fixed-point
output. Refer to Figure 15-8 for the Parameters tab with these changes
made.

Figure 15-8. Block 1 Parameters Tab

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-19 SystemBuild User Guide

4. On the Outputs tab, select a Radix Position of 6 as shown in
Figure 15-8.

This is critical to the precision of the output.

Figure 15-9. Block 1 Outputs Tab

5. From the Parameters tab of the TypeConversion Block dialog box for
block 2, modify block 2 so that the Input Type is Signed Byte, the
Input Radix is 6, and the Output Type is Float.

6. To simulate the model, in the Xmath command area, type:

t = [0:0.1:10]';

u = [sin(t),sin(t)];

7. From the SuperBlock Editor that contains test1, select
Tools»Simulate. In the SystemBuild Simulation Parameters dialog,
specify t and u for the time vector and the input data variables,
respectively. Set the Sim Type to Fixed (Round), and enable Plot
Outputs. Refer to Figure 15-10. Click OK.

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-20 ni.com

Figure 15-10. SystemBuild Simulation Parameters Dialog,
Ready for Simulating Comparison

From the plot (refer to Figure 15-11), it appears that, at this radix
position, the fixed and floating values of the input sine wave never vary
by more than about ±0.008. This agrees with the predicted range of
differences, ±1/2 the resolution, which is equal to 2–6 = 0.015625.

Figure 15-11. Plot of Comparison with Radix Position 6

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-21 SystemBuild User Guide

8. To observe the impact of the radix position on the precision of a vector
of values, change the output radix position of block 1 to 0, and change
the input radix position of block 2 to 0. Select Tools»Simulate, and
click OK to rerun the simulation. The dialog box remembers your last
settings.

The output plot should look like Figure 15-12.

Figure 15-12. Plot of Comparison with Radix Position 0

Examination of this plot shows that with a radix position of 0, the
fixed-point and floating-point representations can differ by as much as
±0.5. Again, this agrees with the predicted range of differences, ±1/2
the resolution, which is equal to 20 = 1.

Comparing the Effects of Different Conversion Sequences
The effect of converting between floating and fixed data types for different
arithmetic operations varies according to the sequence of operations. This
is illustrated in Example 15-10, where fixed- and floating-point inputs are
brought into a network of TypeConversion blocks and Gain blocks. Each
input is changed to the other data type and multiplied by a constant. It is the
sequencing of these operations that is significant.

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-22 ni.com

Example 15-10 Effect of Data Type Conversion before and after Multiplication

1. Build up the model shown in Figure 15-13. Give the model a name,
test2, and make the SuperBlock discrete. Observe common points of
the blocks.

Figure 15-13. Model for Data Type Conversion before and after Multiplication

• All the Gain blocks share the same gain value, 1.3. The output data
type for the Gain blocks named float is Float. The output data
type for those named SB6 is Signed Byte, Radix 6.

• The two TypeConversion blocks named SB6in_float_out have
input data types of SB6 and output data types of Float. The other
two TypeConversion blocks have input data types of Float and
output data types of SB6.

• The upper summing junction, Float_sub, has an output data type
of Float. The other summing junction, Fixed_sub, has an output
data type of SB6.

• The data type of input 1 is SB6. For input 2, it is Float.

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-23 SystemBuild User Guide

2. When the blocks are connected correctly, create a t-vector and
u-matrix, then proceed to simulate the model:

t = [0:0.1:10]';

u = [sin(t), sin(t)];

y = sim("test2",t,u,{fixpt, graph})

The plot should look like Figure 15-14. Observe the many differences
between the sequences of operation.You can design many other modes of
operation to compare.

Figure 15-14. Plot of the Data Type Conversion before and after Multiplication Example

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-24 ni.com

Fixed-point Blocks and I/O Data Type Rules
A selected group of SystemBuild blocks have been adapted for use with
fixed-point arithmetic. Table 15-1 lists the changed blocks, plus data typing
I/O and block parameter rules for using the blocks with fixed-point
arithmetic. National Instruments software supports four data types: floating
point, integer, logical, and fixed. Under fixed, NI supports 390 sub-types,
referred to as fixed-point data types, the subject of this chapter.

Unless otherwise noted, in Table 15-1 the terms type and fixed type refer to
fixed-point data types. Fixed-point types are said to be the same only if the
length, sign status (signed or unsigned), and radix position are identical.

Table 15-1. Blocks Compatible with Fixed Point, with Data Type Rules

Block Names Input/Output Data Type Rules

SuperBlocks

Datastore Fixed type of input to block must be the same as the register type.

ReadVariable
WriteVariable

Type of input to block must be the same as input parameter type.

All inputs must be the same type.

All outputs must be the same type.

Algebraic Blocks

Gain All inputs must be the same fixed data type.

All outputs must be the same fixed data type.

Output word size must be ≥ input word size.

Refer to the Gain Block: A Special Case section of this chapter.

Summer

ElementProduct

DotProduct

CrossProduct

Each element in an input vector must be the same fixed type.

All outputs must be the same fixed type.

Output word size must be ≥ input word size.

ElementDivide Each element in an input vector must be the same fixed type.

All outputs must be the same fixed type.

Numerator word size may exceed denominator word size

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-25 SystemBuild User Guide

TypeConversion Fixed type of input to block must be the same as input parameter fixed type.

All inputs must be the same fixed type.

All outputs must be the same fixed type.

Piece-Wise Linear

DeadBand All inputs must be the same fixed type.

All outputs must be the same fixed type.

Parameter type is the same as the fixed input type

Saturation Limiter All inputs must be the same fixed type.

All outputs must be the same fixed type.

Parameter fixed type must be the same as the output fixed type.

AbsoluteValue All inputs must be the same fixed type.

All outputs must be the same fixed type.

Preload All inputs must be the same fixed type.

All outputs must be the same fixed type.

Mag: Exact same as output type.

Slope: shrinkwrapped output word length.

Dynamic Blocks

TimeDelay All fixed data types must be the same.

Initial output must be the same fixed data type as the output.

Logical Blocks

LogicalOperator
RelationalOperator

All data types are accepted, in any combination.

ShiftRegister All data types must be the same.

DataPathSwitch The first input can be any type.

All other input fixed types and the output fixed type must be the same; can
be different from the first.

Table 15-1. Blocks Compatible with Fixed Point, with Data Type Rules (Continued)

Block Names Input/Output Data Type Rules

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-26 ni.com

Advanced Simulation Topics
This section provides information for advanced users on topics of
Intermediate data types, various simulation topics, 32-bit operations,
and the Gain block.

Interpolation Blocks

ConstantInterp
LinearInterp

All inputs must be the same fixed type.

Invals: same fixed type as inputs;

Outvals: same fixed type as outputs.

BilinearInterp Input 1 and Input 2 can be different fixed types.

Inval 1 must be the same fixed type as Input 1. Inval 2 must be same fixed
type as Input 2. Outvals must be the same fixed type as outputs.

Matrix Equations

ScalarGain All inputs must be the same fixed data type.

All outputs must be the same fixed data type.

Output word size must be ≥ input word size.

Refer to the Gain Block: A Special Case section of this chapter.

MatrixTranpose All inputs must be the same fixed data type.

All outputs must be the same fixed data type.

Output word size must be >= input word size.

Constant All inputs must be the same fixed data type.

All outputs must be the same fixed data type.

Output word size must be >= input word size.

Table 15-1. Blocks Compatible with Fixed Point, with Data Type Rules (Continued)

Block Names Input/Output Data Type Rules

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-27 SystemBuild User Guide

Intermediate dialog boxTypes
The basic fixed-point algebraic operations are uniquely defined when all
three of the following conditions are met:

• The operation is binary (requires two operands) or unary (requires only
one operand).

• The operand types are defined.

• The result data type is defined.

Since the data types of all inputs and outputs are required for any block
in a SuperBlock, it follows that all fixed-point binary operations are
well-defined in SystemBuild. Complications arise, however, when models
are created that involve basic operations with more than two operands.
An example of such a situation would be a Summer block with four inputs,
formally described by:

y = a + b + c + d (15-1)

For this discussion assume that the computation order in this expression is
equivalent to:

y = (((a + b) + c) + d) (15-2)

This ordering indicates that the computation would proceed by calculating
the sum of a and b, which in turn will be added to c, and so on. In other
words, the following intermediate steps are involved in the calculation of y:

s1 = a + b (15-3)

s2 = s1 + c (15-4)

y = s2 + d (15-5)

The question arises as to what the data type of s1 and s2 should be as the
user has not specified them in SystemBuild. Variables s1 and s2 are
intermediate variables and the types associated with them are called
intermediate types or ITypes. Although these variables are transparent to
the user, a consistent and predictable determination of their types is crucial
to the final result. Generally speaking, for any block that combines n
operators, n – 1 intermediate types can be defined.

As another example, consider the following case, which raises a subtle
issue:

y = –a + b (15-6)

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-28 ni.com

At first sight, it seems that Equation 15-6 is the same as Equation 15-7:

y = b – a (15-7)

and therefore requires no intermediate variables—hence no ITypes. But
closer inspection reveals that Equation 15-6 may be written as:

s1 = –a (15-8)

y = s1 + b (15-9)

Thus, Equation 15-6 is not a simple subtraction but represents a negation
operation followed by an addition. With two operands, negation and
addition, it is not surprising that Equation 15-6 involves an intermediate
data type. This implies that Equation 15-6 and Equation 15-7, depicted in
Figure 15-15, may lead to results that are different although numerically
close. Using Equation 15-7 is more efficient because it contains no ITypes
and it also maps directly to one operation in both the simulation engine and
the generated code. It is therefore the recommended usage.

Figure 15-15. Add and Subtract Sequencing

National Instruments built-in IType rules are based on two goals. Given the
operand types and the nature of operation, the ITypes are derived such that:

1. The likelihood of overflow is minimized.

This makes sure that, possibly at the expense of precision in the least
significant bits, the most significant bits in the operation are protected.
There is one minor exception to this rule. Refer to Example 15-11,
step 4b.

2. Word length promotions are minimized at the expense of precision in
the digits to the right of the radix point.

The idea behind this goal is to strike a balance between precision and
computational expense in the eventual code that is generated from the
SystemBuild model. Word promotions refer to increase in the size of

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-29 SystemBuild User Guide

the data type word length—for example, from 8 bits to 16 bits.
Example 15-11 illustrates this phenomenon.

Example 15-11 Need for Intermediate Types

1. Suppose that z = ((x1 + x2) + x3) with:

Type(x1):= Signed Byte (8 bits), Radix 3 (SB3)

Type(x2):= Signed Byte, Radix 4 (SB4)

Then you can use rules 1 and 2 to determine an IType for the sum of
x1 and x2. To apply rule 1, you evaluate the extremal number that can
possibly be produced by the addition. In the worst case, the largest
possible sum (in an absolute value sense) occurs when x1 = –16 and
x2 = –8, in which case x1 + x2 = –24. Thus the IType that guards
against overflow is SB2 (Signed Byte, Radix 2).

2. In step 1, if the data type of x2 were changed such that:

Type(x2):= Signed Byte, Radix 1 (SB1)

Then the IType based on rules 1 and 2 would be SB0.

3. In step 1, if the data type of x2 were changed such that:

Type(x2):= Signed Byte, Radix 0 (SB0)

In the worst case, no 8-bit signed data type could guard against
overflow. In this situation, the IType would be a 16-bit signed number
with radix 7 (denoted as SS7).

4. Now consider the earlier expression y = –a + b.

You need to determine an IType for the negation operation.

a. First assume that:

Type(a):= Unsigned Byte, Radix 4 (UB4).

Then, since the negated value is negative, the IType must be
signed. Since, in the worst case, data type UB4 might be as large
as 15.9375, the appropriate IType is SB3.

b. Now consider the case where:

Type(a):= Signed Byte, Radix 4 (SB4)

The only difference here is that a is now a signed quantity.
Ignoring the possibility of a being equal to the extremal negative
number accommodated by this data type (–16), SB4 would
accommodate all the other values that fit in Type(a). Since the
price of accommodating this last value is too much (losing one
complete bit of information), an exception is made to IType
selection rules above to keep SB4 as the IType here. Thus the

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-30 ni.com

negation of signed types, in general, is a minor exception to the
first rule of ITypes.

The fixed-point enhancements to SystemBuild include a generalized
version of the IType presented above. This generalization is implemented
for all the data types and basic algebraic operations (negation, addition,
subtraction, multiplication, and division, as well as all the supported blocks
that require them). Notice that, for 8- and 16-bit data types the IType rules
guarantee that overflow would not take place—the case in step 4b is the
only exception. For 32-bit types, this guarantee is not possible because no
word promotion beyond 32 bits is provided.

Consider a computation with a large number of additions, such as:

(15-10)

To keep the nesting of intermediate data types from becoming excessive, a
limit has been placed on the number of intermediate data type computations
that will be performed for any summation or multiplication block. The limit
is placed at six. The seventh intermediate data type is set to the result data
type and the cycle continues.

You can avoid the use of intermediate type rules by restricting block
diagrams to contain only well-defined binary or unary operations.

Simulation Issues
As you construct SystemBuild diagrams that perform fixed-point
operations, keep certain issues in mind.

Fixed-point addition and multiplication (with or without intermediate
types) forms an algebraic system that, although commutative, is not
associative. For example, as illustrated in Figures 15-15 and 15-16, this
means that:

, (commutative) (15-11)

whereas,

, (not associative) (15-12)

Therefore, you must take care in forming block diagrams that perform such
operations.

y a1 a2 a3 a4 a5 a6 a7 ...+ + + + + + +=

a b+() c+ c a b+()+=

a b+() c+ a b c+()+◊

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-31 SystemBuild User Guide

The non-associativity of the elementary algebraic operations implies that
the computation order must be defined for these operations. For example,
does a Summer block that adds up three variables a, b, and c perform, as
follows:

(15-13)

(15-14)

or ? (15-15)

To provide a consistent answer to this question, SystemBuild algebraic
blocks are organized such that the operation order is the same as the order
that the Connection Editor assigns to the input pins. Thus in the Summing
block example, the signal connected to input pin (1) is added to the signal
connected to pin (2) first, and then the result is summed with the signal that
is connected to pin (3). Refer to Figure 15-16. This can have a profound
impact on the final operation result as it is possible to enhance the precision
or even avoid dealing with overflow as in (1) under Example 15-12 below.

Example 15-12 Possible Implementations of the Expression a+b+c

Figure 15-15 shows two of the three possible implementations of
the expression a + b + c. This figure assumes that Type(a):= SB3,
Type(b):=SB4, Type(c):= UB3, and that any Summer block output
data type is SB3.

In this setup, it is easy to see how the different implementations might
produce different results. Assume a = –14.75, b = 6.75, and c = 14.75.
Then, using the summation rules for fixed-point data types, the
implementation of a + b + c as (a + b) + c yields:

whereas the implementation of a + b + c as a + (b + c) results in:

b + c = 15.875 (b + c = 21.5 but SB3 saturates at 15.875)
Therefore, a + (b + c) = 1.125

Assume that only one Summer block is used to realize the sum. Then the
implementation of the equations above is shown in Figure 15-16.

a b+() c+

a b c+()+

a c+() b+

a b+ 8–=
a b+() c+ 6.75=

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-32 ni.com

Figure 15-16. Adding Three Operands

Now you have

(a + b) has the IType SB2
a + b = –8,

(a + b) + c = 6.75

which shows no loss of precision.

The SystemBuild implementation of the fixed-point operations is based
on the saturation arithmetic approach. This means that when results of
operations overflow the limits of prescribed output data types, the result is
a value that is clipped at the appropriate limit of that data type.

32-bit multiplication and division are dealt with differently in fixed-point
arithmetic. This is explained in the 32-bit Operation Issues section of this
chapter.

Some of the blocks that are supported in fixed-point have parameters. For
the block operation to be defined fully, these parameters require types. In
all blocks, with the exception of the Gain block, the parameter data types
are derived from input and/or output types as explained in Table 15-1. The
Gain block exception is explained in the Gain Block: A Special Case
section of this chapter.

32-bit Operation Issues
The operations of 32-bit multiplication and division are different from their
8-bit and 16-bit counterparts because the maximum word size available is
only 32 bits and therefore operands cannot be promoted to a higher word
size before performing multiplication or division.

In 32-bit multiplication, if the sum of the radix positions of the operands is
greater than that of the destination radix position, then the operands are
shifted right or left so that when the two operands are multiplied they
produce a result that conforms to the radix position of the destination. The

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-33 SystemBuild User Guide

radix position of the destination need not be the same as the radix position
of the result. This is done in order to lessen the chance of overflowing
during multiplication (shifting significant bits out of the register to the left),
although it cannot always prevent overflow from occurring. Also, while
shifting right, the operands can lose precision (shift significant out of the
register to the right), and this can reduce the accuracy of results. If the sum
of the radix positions of the operands is less than that of the destination,
then the operands are multiplied, and the result is aligned with the
destination radix position. The result value gets clipped if overflow occurs
when it is aligned with the destination. This does not always prevent
overflow from occurring because the result of the multiplication itself could
overflow.

In 32-bit division, if the radix position of the dividend is greater than that
of the divisor, the operands are divided and the result is aligned to the radix
position of the destination. If the radix position of the divisor is greater than
that of the dividend, then the divisor is shifted right so that it gets aligned
with the dividend. The result of the division is aligned to the radix position
of the destination. Shifting right might result in zeroing of the divisor. If this
happens, depending on the sign of the dividend, the extremal value that can
be represented in 32 bits is returned. Without this adjustment, when shifting
right, the divisor might lose precision and impact the accuracy of the result.

Gain Block: A Special Case
The Gain block is among the most commonly used and most frequently
parameterized blocks in the National Instruments block library. Partly for
this reason, for all its apparent simplicity, the Gain block represents a
special case in fixed-point arithmetic. The exception regarding this block is
that a user can optionally specify the radix position for the gain parameter
if the inputs and outputs of the block are fixed point. This feature is useful
for defining data types with headroom for possible calibration using
Run-time Variable editing. Refer to Example 15-13.

The fixed-point data types are defined by three variables: signed or
unsigned, length, and radix position. In setting the data type of the Gain
block, the variables are governed by the following considerations:

• Whether the gain parameter is signed or unsigned is defined by the sign
of the parameter.

• The word size of the parameter is defined by the input data type.

• By default, the radix position of the gain parameter is derived by
“shrink wrapping” the user-supplied value of the gain parameter. This
means that the radix position is chosen to give the minimum loss of

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-34 ni.com

precision (truncation of less significant bits) with no loss of
significance (truncation of more significant bits).

Radix Calculations
If you specify an UnsignedShort as the output type of a Gain block, and
place the number 3.1 inside it, the assigned radix is 14.

If you specify the output data type of the Gain block as fixed-point, the
Parameters tab in the block dialog box offers a Define Radix field with a
default value of No. If you click to change this value to Yes, a Gain Radix
field becomes active, allowing you to specify a value for the radix position
of the gain parameter. The only restriction on this value is that it must be
consistent with the word size and sign status of the gain parameter, which
are the same as the word size and the sign of the parameter.

Define Radix position used in conjunction with RVE helps you
interactively establish an optimal fixed data type for a given parameterized
Gain block. The operation of the Define Radix position feature is illustrated
in Examples 15-13 and 15-14.

Example 15-13 Building and Exploring Gain Blocks with Define Radix Position

In this example you build a block diagram with %Variable Gain blocks that
have different Gain Radix positions, and compare the outputs of the blocks
with gain values chosen to illustrate the effects of appropriate and
inappropriate choices of Gain Radix positions.

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-35 SystemBuild User Guide

1. Create a new SuperBlock and name it test3. Make it discrete and
accept the default Sampling Interval of 0.1. You will set the data types
later. Start building the model shown in Figure 15-17.

Figure 15-17. Gain Block Radix Example

2. Name the first block r5. Make the Gain 1.3, and the %variable equal
to j. Press the <Ctrl-P> keys to send the variable to Xmath. Click the
Outputs tab, and change the Output Type to Signed Byte and the
output Radix to 6. Return to the Parameters tab, and observe that
Define Radix is an active field with default No. Change the value to
Yes. The Gain Radix field becomes active. Make the Gain Radix 5.
Click OK.

3. For the second block, duplicate the steps for the first, except name the
block r6 and specify a Gain Radix of 6. Although the value of the gain
is also 1.3, you cannot use the same variable because the radix is
different. Name the gain variable k, and press the <Ctrl-P> keys to save
the value to Xmath.

4. From the SuperBlock Properties dialog, change the Inputs to 2. Click
the Inputs tab, and change the Input Types to SignedByte. Change the
Input Radix to 6. Make all data types the same.

5. Set the Output Data Type of the Summer block to SignedByte with an
Output Radix of 6. Name the summing junction difference.

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-36 ni.com

6. Prepare for simulation. In the Xmath command area, type:

t = [0:0.1:10]';

u = [sin(t), sin(t)];

7. Simulate model with the following command:

sim("test3",{time=t,input=u,ialg="ALG",fixpt=1,fixpt_round=1,

 minmax="minv",graph=1,typecheck=1,simtimer=1,initmode=0})

The plot should look like Figure 15-18.

Figure 15-18. Plot Comparing Different Gain Radix 5 versus 6

The spikes in the top strip of Figure 15-18 reflect the differences
between the quantized sine waves in the two other strips. The
distribution and heights of the spikes are caused by a combination of
quantization factors:

• The sine waves were quantized on input (rounded), being
converted to different data type fixed-point numbers.

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-37 SystemBuild User Guide

• Both input sine waves were multiplied by 1.3, which was
variously expressed as two fixed-point numbers of different data
type: 1.296875 (radix 6), and 1.3125 (radix 5).

• The two sine waves were subtracted, with the result quantized to
radix 6.

• Finally, the difference was converted to floating-point for output
and display.

Example 15-14 Overflow Caused by Gain Values

For this example, you use the same model but a different gain value that
forces overflow on one of the channels of comparison.

1. Display the model from Figure 15-17.

2. Change the values of the gains:

j = 2.6;

k = 2.6;

3. Run the simulation again with the t and u values from step 6 in
Example 15-13 and the sim() command from step 7 in
Example 15-13.

The plot should look like Figure 15-19.

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-38 ni.com

Figure 15-19. Plot of Gain Radix Positions with Overflow

Observe what is happening. The new gain value, which is a fixed-point
number approximately 2.6 (actually 2.59375), when multiplied by the
numbers from the u-vector (sine wave) at its extremal values, produces
an overflow in the block whose data type is SB6 and therefore whose
range is [–2: 1.984375]. The other block, whose data type is SB5, has
a range close to [–4: +4], and therefore does not overflow at these
values. You can see the effect of overflow clearly enough by looking at
the bottom strip in Figure 15-19. You can see the approximate amount
of the overflow in the top strip.

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-39 SystemBuild User Guide

MinMax Data Logging
The MinMax data logging tool keeps track of the range of values output by
each block. When the MinMax feature is on, the simulator stores the first
occurrence of the maximum and minimum values for each block. During
fixed-point simulations, the tool also records the first occurrence of an
underflow or overflow in the block calculations, and the overflow
protection status. After simulation, the results are transferred to Xmath and
stored in a special MinMax data set. The name and partition location of the
data set are user defined. The data in the list is available for direct
manipulation. For example, it can be used for post-simulation processing
and analysis.

After the data set is created it can be viewed with the Minmax Display GUI
interface.

Restrictions:

• No continuous SuperBlocks

• Does not work with the resume keyword in simulation

Activating MinMax Logging
In the SystemBuild Simulation Parameters dialog, enter a variable name (or
partition.variablename) into the MinMax Variable field. When you
click OK, the simulation occurs and the MinMax information is copied into
an Xmath list object (referred to as a data set), with your specified name.

Simulating with the minmax Keyword
The sim() keyword minmax takes a string specifying the name of the
Xmath data set used for storing the MinMax data. For example,

y = sim("Top", t, u, {minmax = "test1"});

or, to include a partition

y = sim("Top", t, u, {minmax = "partitionname.test1"});

Notice that MinMax display is not supported with standalone simulation.

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-40 ni.com

Saving MinMax Data Sets to a File
Data sets are stored as Xmath list variables. Like any other Xmath variable,
they can be saved to a file with the save command. If you are saving a
catalog object from the Catalog Browser, be sure to include Xmath data if
you want to preserve your data sets.

MinMax Display Tool
The MinMax Display tool allows you to display minimal and maximal
values of signals from a simulation run. Timing and overflow information
are also displayed. To launch MinMax, type the following in the Xmath
command area.

minmax_display

To load a data set for display, select Special»Load. The Load window
displays the name of the current partition and all data sets available within
it. The partition can be changed. Select a data set, and then click Load.
Click Done when you are finished.

The MinMax Tool is shown in Figure 15-20.

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-41 SystemBuild User Guide

Figure 15-20. MinMax Display, Simple Overflow (Figure 15-19 Example Shown)

SuperBlocks that have MinMax information loaded and available to be
displayed are listed in the SuperBlocks area. Child SuperBlocks are
indented directly below their parent SuperBlocks. Each block number is
part of the name for unique identification, because two SuperBlock
instances can have the same name.

The Blocks field displays the blocks in the selected SuperBlock. Two
numbers (or blanks) may be displayed for each block: the time of the first
overflow and underflow of the block. The Protection field indicates
whether the overflow protection feature (on the Output tab) was enabled at
simulation time. No indicates that it was disabled, and an empty column
indicates that it was enabled. The output information for the block you
select is displayed in the top area.

For each output, the top area displays the selected block name, data type,
the initial minimum and maximum values, and the times they occurred.

Display Options
Select Output Display from the Select menu to change the display options.
After making any changes, click UPDATE to see the new display. Display
options stay in effect until they are changed.

If Display SuperBlock is checked, the window containing the selected
SuperBlock is raised whenever it is selected in the MinMax dialog box.

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-42 ni.com

User-Defined Data Types (UserTypes)
As a convenience in situations where multiple data types are required, you
can assign your own meaningful names to data types, called user-defined
data types or UserTypes. You can use these names in all the block data type
information dialogs. A special editor is provided to let you change the
meaning of a custom data type.

UserType Editor
The UserType Editor provides an interactive interface for UserType
creation, modification, and deletion. This tool is launched from the Xmath
Commands window. Before launching, make sure that the numerical
display format is set to compact. To view the current format, type SHOW
FORMAT. If the format is not compact, type SET FORMAT COMPACT.

To launch the UserType Editor, type UserType in the Xmath Commands
window.

The Windows implementation of the UserType editor is shown in
Figure 15-21. The UNIX version has the same fields, organized in the same
manner, but its appearance is slightly different.

On the left side, a scrolled list displays all currently defined UserTypes. The
buttons on the lower right can update or delete the selected variable.

Figure 15-21. UserType Editor

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-43 SystemBuild User Guide

• To create a new UserType—First type the UserType name in the
Name field and press <Enter> or <Return>. Then choose the data type
for the new UserType. When you are satisfied with the UserType name
and data type, click the Update button. The new UserType appears in
the scrolled list on the left side of the UserType Editor window.

• To modify a UserType—Select the UserType name on the scrolled
list with a single mouse click. You should see the name of the
UserType filled in the Name field. Select the new data type, and click
Update.

• To delete a UserType—Select the UserType name on the scrolled list
with a single mouse click. Click the Delete button at the lower left of
the window.

UserType MathScript Commands
A set of Xmath commands provide the same functionality as the UserType
Editor. Refer to the MATRIXx Help for more information on each
command. Try typing the commands in Example 15-15.

• createusertype—Creates a new UserType definition.

• modifyusertype—Changes the data type of a UserType.

• deleteusertype—Deletes a UserType.

• listusertype—Lists out all defined UserTypes in the Xmath
Commands window.

Example 15-15 Using UserType MathScript Commands

createusertype "test1", {float}

createusertype "test2", {integer}

createusertype "test3", {wordsize = 16, radix = 4, signed = 1}

listusertype

modifyusertype "test2", {logical}

listusertype

modifyusertype "test2", {wordsize = 8, radix = 3}

listusertype

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-44 ni.com

Using UserTypes in SystemBuild
UserType information is located wherever data type information resides.
Typically you have an opportunity to enter an output UserType on a block
dialog Outputs tab as shown in the following figure.

To enter a UserType, you can type its name in the field or make a selection
from the drop-down menu.

• Any UserTypes available in the current catalog are listed in the
UserType combo box. If a UserType is illegal in the current context, it
is marked (Invalid), as shown above.

• After a UserType is entered, other data type items become read only.

• If a UserType is deleted but still referenced in a block, the last value of
the UserType is used.

Example 15-16 Creating and Using a UserType

1. Create a UserType named test1.

2. Create a Gain block in a model.

3. Open the Gain Block dialog. Go to the Outputs tab. Enter the UserType
name test1 in the field named Output UserType (bottom of tab).
Click OK to close the dialog.

4. Go the UserType Editor. Change the data type of test1.

5. Open the Gain block again. Inspect the output data type. It should be
updated to the new UserType definition.

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-45 SystemBuild User Guide

Storing UserTypes
UserTypes are optionally stored in the SystemBuild model file.

The SystemBuild SaveAs and Load dialogs allow you to choose whether to
save or load all UserTypes or none at all.

An Xmath keyword, usertype, is provided to let you control the loading
and saving of UserTypes. The usertype keyword indicates that only
UserType data should be saved. Specifying {!usertype} indicates that
only Xmath data and SystemBuild catalog data should be saved.

SystemBuild Functions in Fixed-Point

Linearization Function
When a SystemBuild model is linearized in the fixed-point mode, the
following steps are performed by the program:

1. The system parameters (parameters defined in the block forms of each
block in the model) are quantized according to their fixed-point data
types.

2. The operating point inputs and state (system initial conditions) are
quantized according to the fixed-point rules.

3. A finite-difference linearization is performed by perturbing the states
and inputs in the quantized model. The perturbation calculations are
done in floating-point arithmetic.

By linearizing a model first in floating-point (floating-point parameters)
and comparing the results to the linearization in fixed-point as above, one
can observe the quantization effects on the model. Especially important is
whether the system eigenvalues after the quantization are still stable (on or
inside the unit circle for discrete models).

The linearization of a multirate discrete model in the fixed-point mode is
also done in a similar way:

1. The model parameters and the operating point are quantized.

2. The model is simulated in floating-point with state and input
perturbations.

3. Linearization is calculated from the simulation data.

For more details on how multirate linearization is done, refer to the
Multirate Linearization section of Chapter 10, Linearization.

Chapter 15 Fixed-Point Arithmetic

SystemBuild User Guide 15-46 ni.com

Simout Function
The simout() function performs the following:

[x, xdot, y] = simout("model", {fixpt, other options})

The calculations for the output y are fixed-point computations. The states x
are extracted from the model after they are quantized according to their data
types. However, for the calculation of xdot, the computation is done in
floating-point. xdot is the “pseudo-rate”, which is computed from

(15-16)

In this computation, x[k+1] is calculated from f(x[k], u[k]) as a fixed-point
calculation. On the other hand, ∆T is the sampling time, which is a
floating-point number. The xdot calculation is done in floating-point
(no roundoffs) to allow a user to extract x[k + 1] from it.

x k 1+[] x k()–
∆T

Chapter 15 Fixed-Point Arithmetic

© National Instruments Corporation 15-47 SystemBuild User Guide

Scaling Aid Blocks
For your convenience in scaling your model, a special set of scaling aid
icons has been added to the palette of ISIM icons. The scaling aid icons are
found in the FI ISIM subpalette. Refer to Figure 15-22.

Figure 15-22. Scaling Aid Icons

The top left icon is a scaling aid. This icon uniquely allows you to generate
a gain value that can be presented to your model during the simulation run,
and to monitor an output from the model in the same time, recording its
maximum and minimum values as you proceed.

© National Instruments Corporation 16-1 SystemBuild User Guide

16
Components

This chapter describes the SystemBuild components feature. A component
encapsulates a SystemBuild SuperBlock hierarchy. Within a model, a
component interacts with other blocks much like a conventional
SuperBlock does, with the notable difference that component information
is stored in a separate catalog. By default, objects or %Variables within
a component do not affect objects in the Main SuperBlock hierarchy.
However, components can be parameterized using %Variables and
variable blocks. These can be exported through the component interface
so they are accessible to component users.

Components provide a mechanism for archiving, distributing, and licensing
SystemBuild SuperBlock hierarchies. They can be used within a
development team to create libraries of commonly used SystemBuild
SuperBlock hierarchies, thereby promoting greater reuse. A component can
be encrypted to prevent users from viewing or altering its internal details.
It also can be licensed, so that use is restricted to those with a valid
license key.

This chapter explains how to both create and use components. A distinction
is made between the component user and the component creator.

Introduction
Components are encapsulated SuperBlock hierarchies. Like pre-defined NI
blocks, they can be referenced in a model, connected to other blocks, and
parameterized using %Variables and variable blocks that are exported
through the component interface. Components with the same number of
inputs and outputs and the same parameterization interface can be used
interchangeably in your model.

Components have a local namespace. Namespace is the scope within which
a name can refer to only one entity. By default, a SuperBlock hierarchy (for
example, the Main catalog) can contain only uniquely named items. If an
object is introduced into the hierarchy and there is a namespace conflict,
then the new item will overwrite the old.

Chapter 16 Components

SystemBuild User Guide 16-2 ni.com

Because a component is an encapsulated hierarchy, the names of all entities
within its hierarchy have local scope, therefore, a component can be
introduced into a model without contaminating its namespace. For
example, a SuperBlock called foo in the model has no effect on a
SuperBlock called foo within a component in that same model, and
vice versa.

You can make a component from an existing SuperBlock hierarchy, as long
as it does not contain elements that use resources that can’t be saved with
the component catalog. The Restrictions on Component SystemBuild
Hierarchies section discusses these restrictions.

Component Scope
Encapsulation is another important component trait. We have already
mentioned that variables within a component are in a separate namespace,
which prevents conflicts with SystemBuild catalog items. To extend that
thinking, the catalog in which the component exists must not have another
item of the same name, or a conflict occurs.

Sometimes, however, it’s useful to have access to parameters within the
component scope. For example, you might want to alter %Variables or
variable block values.

A parameter can be visible outside the component local scope if it is
explicitly exported by the component creator. Exported %Variables and
variable blocks form the parameters for the component. Any %Variables
and variable blocks that are not explicitly exported are not visible outside
the component local scope and are referred to as contained variables. The
details of exporting variables are discussed in the Creating Components
Using the Component Wizard section.

Component Interface
A component interface provides the connectivity between the component
encapsulated SystemBuild SuperBlock hierarchy and the model that
references it. A component interface consists of two parts:

• Inputs and outputs

• Parameters (exported %Variables and variable blocks)

Component inputs and outputs have a similar behavior to a “built-in” block
inputs and outputs. They are a means of providing data to and obtaining
data from the SuperBlock hierarchy contained in the component. The
component is parameterized using exported %Variables and/or variable

Chapter 16 Components

© National Instruments Corporation 16-3 SystemBuild User Guide

blocks that take up namespace in the item (in most cases, the user model)
that contains the component reference. The user “tunes” the component by
assigning values to these parameters.

Component Parameter Sets
A component parameter set, or PSET, is a set or subset of values for the
component parameters. Component parameter sets are stored in files and
can be loaded into an active Xmath session. Parameter sets make it
convenient to set the parameters of a component to a known configuration.
The details for using parameter sets can be found in the Controlling
Component Parameters section and in the Loading Component Parameter
Sets section.

Component References
Component references are classified based on the location of their
definition with respect to the current model. The definition of a component
is the catalog that contains the SystemBuild SuperBlock hierarchy that the
component encapsulates. Component references can be classified as:

• Regular component references

• File component references

Regular component references are those references whose component
definition is contained within the current model. File component references
are those component references whose component definition is contained
in another model file. This is analogous to SuperBlock references and file
SuperBlock references. File component references are generally used to
refer to a component that is part of a library. The definition of the library
component is located in a separate file that the user may or may not have
permission to write to. The user includes the model file containing the file
component definition in the SETSBDEFAULTS {SBLIBS} library path.

File component references and regular component references are used in a
similar manner except that one cannot change scope into a file component
catalog. The details of changing scope into a component are discussed in
Changing Scope into a Component Catalog section.

Chapter 16 Components

SystemBuild User Guide 16-4 ni.com

Component Access
Components provide different levels of access to the user. These access
restrictions combined with encapsulation make components a useful
mechanism for archiving, distributing, and licensing SystemBuild
hierarchies. A component access level determines how the user interacts
with it in a model. The following sections describes the different types of
components and level of user access provided.

Note All components, regardless of access level, encapsulate the SystemBuild
SuperBlock hierarchy they represent.

Open Components
Open components provide complete access to the user. You are able to
view the internal details of the open component by changing scope to its
catalog. Simulation, code generation, and documentation generation are
possible for models that reference open components. Open components are
generally used within a development team to create libraries of commonly
used SystemBuild hierarchies.

Encrypted Components
Encrypted components provide a convenient way of sharing SystemBuild
model information outside the development team while protecting
sensitive information and intellectual property.

A component user cannot view the internal details of encrypted
components. Encrypted component references are file component
references. The user cannot change scope into an encrypted component
catalog. You can simulate and generate documentation for models that
reference encrypted components, but the model output does not expose the
internal details of the encrypted component.

• You cannot generate code for models that contain references to
encrypted components.

• You cannot load encrypted component files into the SuperBlock
Editor.

Chapter 16 Components

© National Instruments Corporation 16-5 SystemBuild User Guide

Licensed Components
Encrypted components can be licensed in the public domain as packaged
libraries so that only users with valid license keys are allowed to analyze
and simulate models that reference these licensed components. Licensed
components behave just like encrypted components except that they
require a valid license key to be simulated as part of a SystemBuild model.

Using Components in SystemBuild Models
This section describes the use of components in a model. Component
creation is covered in Creating Components.

References to components are similar to references to built-in NI blocks
(for example, a Gain block). They can used in the same manner as
NI blocks.

Viewing Components
This section briefly describes how to view components in SystemBuild
Catalog Browser and editor windows. Refer to the MATRIXx Help for
Catalog Browser for more details.

Table 16-1. Summary of Component Types

Feature Open Encrypted Licensed

Provides encapsulation Yes Yes Yes

Can be referenced as a regular component reference Yes No No

Can be referenced as a file component reference Yes Yes Yes

Component details accessible Yes No No

Can change scope into component Yes No No

Can simulate models containing component Yes Yes Yes

Can be simulated without a valid license key Yes Yes No

Can block-step into component during interactive simulation Yes No No

Can generate code for models containing component Yes No No

Can generate documentation for models referencing
components

Yes Yes Yes

Component details shown in generated documentation Yes No No

Chapter 16 Components

SystemBuild User Guide 16-6 ni.com

Figure 16-1 shows a component reference in the SuperBlock Editor. The
representation of component references is similar to that of SuperBlock
references.

Figure 16-1. Default Component Icon

Component references are displayed in the Contents view of the Catalog
Browser, just as with other block references. If a model contains regular
components, then the component definition is listed in the Components
folder of the Catalog view.

Creating References to Components
You can create references to components in many ways depending on
whether the component definition exists in the current model, a reference
to the component already exists in the current model, or a custom block for
the component exists on a custom palette.

Note References can be created using the standard drag and drop mechanism.

You can use the following methods to create component references in the
editor.

• To reference a component whose definition exists in the current model,
go to the Catalog view, and open the Components folder. Drag and
drop a component from the Components folder into the editor.

• To create a new SuperBlock reference to a component item, go to the
Catalog view in the Catalog Browser, and click a SuperBlock that
references a component. The Contents view lists the blocks. Drag the
reference from the Contents view to the editor.

• To create a file reference to a component defined in a library catalog,
go to the Catalog view, click the Libraries folder, and select a
library catalog. A list of components available in the library catalog is
displayed. Drag and drop a component from the Catalog Browser into
the editor.

Chapter 16 Components

© National Instruments Corporation 16-7 SystemBuild User Guide

• To create reference to a component that exists as an item on a custom
palette, drag it from the palette and drop it into the editor, just as with
a predefined NI block. Refer to Chapter 19, Custom Palettes and
Blocks.

• All SuperBlock references become component references to the top
SuperBlock in the component. Making a component out of a
SuperBlock hierarchy from the parent SuperBlock creates a reference
to the newly created component. The new component reference
appears in any SuperBlock that contained the component top-level
SuperBlock—the top SuperBlock in the component hierarchy before
the hierarchy was converted into a component.

Controlling Component Parameters
To view the parameters of a component, bring up the Component Block
dialog box for a component reference. Any exported %Variables are listed
on the Parameters tab.

To change the value of a component parameter, an Xmath partition must be
specified for the component reference in the Component Block Partition
field. After this Xmath partition has been specified, the parameters of the
component reference will obtain their values from it. If an Xmath variable
with the same name as the component parameter is not present in the Xmath
partition, the parameter default value is used. The column In Partition
specifies whether the corresponding parameter is present in the specified
Xmath partition. To change the values of a variable in the component
reference Xmath partition, change it in Xmath, or, alter the value in the
Component Block dialog.

Loading Component Parameter Sets
Parameter sets can be used to load in a particular set of values for a
component reference parameters. Before you can do this, you must specify
an Xmath partition and store the parameter sets for the component there.
After the Xmath partition for a component reference is specified, the user
can choose between Palette or User parameter sets on the Parameters tab of
the Component Block dialog.

• Palette parameter sets are those that are contained as part of the custom
block packaging in the custom block directory specified by the palette.

• User parameter sets are created by the end-user and loaded into the
current working session of SystemBuild using the Psets_Load
command. Refer to the Creating and Using Parameter Sets section.

Chapter 16 Components

SystemBuild User Guide 16-8 ni.com

Available parameters sets are listed in the combo box in the Parameter Sets
section. To load the parameter set into the component reference Xmath
partition, choose one of the listed parameter sets and click the Load PSET
button. Loading a parameter set creates the variables specified in the
parameter set in the specified Xmath partition (if they do not already exist)
and assigns them the values specified in the parameter set. The set of values
specified in a parameter set may be a subset of the component parameters.

Note Loading a parameter set changes the values in an Xmath partition. All references
that use the Xmath partition are affected. If this is undesirable, then the references should
specify different Xmath partitions. This mechanism provides a way of coupling related
component references by specifying the same Xmath partition to these references.

The Creating and Using Parameter Sets section of this chapter contains
more details on PSETs.

Changing Scope into a Component Catalog
Typically, you do not need to know the internal details of a component, but
if the need arises, you can change scope into a component catalog to view
its contents. To do this, select a component in the component section of the
Catalog Browser. Then select View»Component Catalog, or raise the
Shortcut menu and select Component Catalog. Notice, not every
component allows you to scope into its catalog (refer to Table 16-1).

When you enter a component catalog scope, the text field just above the
Catalog view reflects the current catalog. The contents of the user model
are replaced with the component SystemBuild SuperBlock hierarchy.

The Catalog Browser treats a component catalog exactly the same as other
catalogs. If a component contains other components, you can change scope
into the child components catalogs in the same fashion. To navigate down,
open a component catalog. To navigate to the parent, click the directory
icon. To return directly to the main model, select View»Main Catalog.

Note If any changes are made within a component catalog, the component needs to be
recomponentized. Refer to the Modifying Components section for details.

Simulating Models with Components
Models that contain components are simulated in the same way as other
models. If the model contains licensed components, however, the user must
to possess a valid license key for the licensed component in order to analyze
and simulate the model.

Chapter 16 Components

© National Instruments Corporation 16-9 SystemBuild User Guide

Creating Components
This section first describes component concepts so that you, as the
component creator, can accurately design the SystemBuild SuperBlock
hierarchy that will become a component. The name of the component
created is the top-level SuperBlock in the SuperBlock hierarchy that is
transformed into a component. The actual creation of the component is
done using the Component Wizard, which is discussed in the Creating
Components Using the Component Wizard section.

Restrictions on Component SystemBuild Hierarchies
SystemBuild components encapsulate SuperBlock hierarchies. Therefore,
any modeling element that breaks this encapsulation is not allowed in a
component hierarchy. These elements cannot be included in components:

• DataStores

• References to File SuperBlocks or File components

• IA blocks

• SuperBlock or component references that specify a partition

• UCBs or MathScript blocks that use global variables

If a hierarchy contains one of these elements, the componentization fails.

Technically, the timing attributes of a discrete SuperBlock hierarchy
(sampling rate and time skew) also invalidate encapsulation because
they cannot be controlled through the component interface but are still
visible outside the component. However, SystemBuild allows you to
componentize a discrete SuperBlock hierarchy with the restriction that
its sampling rate and time skew are fixed at the time of component creation.
A better method, however, is to convert the top-level SuperBlock in the
discrete hierarchy to a procedure SuperBlock so that the component
encapsulation is not violated. A component that contains a procedure
SuperBlock as the top-level SuperBlock assumes the timing characteristics
of its parent.

Chapter 16 Components

SystemBuild User Guide 16-10 ni.com

Understanding Parameterization of Components
A component user can tune SystemBuild components by assigning values
to the parameters exported through the component interface by the
component creator. These exported parameters can be %Variables or
variable blocks. The creator needs to identify the component parameters
that are important for tuning, ensure that they are either %Variables or
variable blocks (else create %Variables or variable blocks and use them in
the hierarchy), and export them at the time of component creation.

All %Variables and variable blocks that are not exported at the time of
component creation assume local scope and are referred to as contained
variables. Contained variables are not visible to the user, so it is important
that the component creator carefully assign appropriate default values. The
default values used for the contained variables are the block defaults unless
the component creator specifies otherwise at the time of creation. These
default values are used if the component user does not define the exported
variables in the component reference partition.

Understanding the Component Scope
The component creator must understand the concept of component scope
in order to manage the component scope hierarchy. A component scope is
the collection of the items in the component private catalog and the
parameters (%Variables and variable blocks) that are present in the
component. These parameters include all of the exported variables of child
components that the component may contain. The component scope is
associated with two namespaces—a catalog namespace and a variable
namespace. The names of the component catalog items (SuperBlocks, State
Transition Diagrams and child components) occupy the component catalog
namespace. This implies that all names must be unique within a component
private catalog. Within a component, all variables should refer to the same
entity. Component variables with the same name are assumed to have the
same datatype and dimensions. If this assumption is violated, the
Component Wizard reports an error at the time of component creation.
Refer to the Creating Components Using the Component Wizard section
for more information.

When a component contains another component, the exported variables of
the contained component assume the scope of the parent component. The
parent component, in turn, may export some or all of the contained
component exported variables. If any of the contained component exported
variables are not exported by the parent component, they become the parent
component contained variables and assume the value specified by the
parent component, if any. Otherwise, they default to the values assigned by

Chapter 16 Components

© National Instruments Corporation 16-11 SystemBuild User Guide

the child component creator. This is important to note because all the
exported variables of the child component are no longer accessible to you.

If a component contains two child components, foo and bar, and each
child exports a variable with the same name, then the two components are
coupled. As stated in the Restrictions on Component SystemBuild
Hierarchies section, component references within a component cannot
specify a partition. Therefore the references to foo and bar cannot specify
partitions. The assumption is that the two components are coupled because
they have exported the same parameters.

Mapping Exported Variables
Mapping is a mechanism by which the component creator can parameterize
a component with parameters that do not exist inside the component
SuperBlock hierarchy. The component creator creates variables called
mapping parameters and makes them visible to the component user through
the component interface. The component creator then uses these mapping
variables to set the values of %Variables in the component SuperBlock
hierarchy using mapping equations (valid Xmath statements). To the
component user, the mapping variables look the same as any other exported
variable. The component user can assign values to the mapping parameters
that, in turn, are used to assign values to the %Variables in the component
SystemBuild SuperBlock hierarchy through the mapping equations.

If a component uses mapping, then the only parameters visible to the
component user are the mapping variables and the exported variable
blocks. The component creator must decide which of the %Variables in
the hierarchy to export. Mapping can be performed only on %Variables
identified as exported variables.

If a component uses mapping, every exported %Variable must be mapped.
For example, if a %Variable foo is designated as an exported variable in a
component that uses mapping, and no mapping variable is assigned to foo,
an inconsistency occurs because foo is not visible to the component user,
and therefore its value can never be modified.

One of the advantages of using mapping, as opposed to modeling the
mapping equation inside the component SuperBlock hierarchy, is that
mapping allows constants without complicating the model. Another major
advantage is that the exported variables are not computed at every time step
during simulation but only at the start of the simulation or if the mapping
variable is changed during RVE (run-time variable editing). Therefore,
mapping is more efficient during simulation and keeps the model simple.

Chapter 16 Components

SystemBuild User Guide 16-12 ni.com

Customizing the Component Dialog
There may be situations where the component creator wants to have a
custom dialog box associated with the component references. For example,
the creator might want to use a graphical representation of the component
parameters so that the component user can modify the parameters by
dragging points on a graph rather than entering them in the fields provided
by SystemBuild native dialog.

Components allow the creator to associate a custom dialog box with the
component references. This custom dialog box can either replace or
augment the native SystemBuild dialog box for component references.
If the component creator decides to override the native dialog, the custom
dialog box is displayed when the component user brings up the dialog box
for component references. If the component creator decides to augment the
native SystemBuild dialog, then the custom dialog box is displayed when
the user brings up the dialog box for component references, followed by the
native dialog box when the user dismisses the custom dialog.

A custom dialog box must be programmed by the component creator with
an MSF. The interface to the MSF is the same as that for the function
sysbldEvent() (refer to the MATRIXx Help), although the interface is
not used when you specify an MSF. The event string is
"CustomDialog".

Documenting the Component
The component creator should adequately document a component so
that it is self-describing to the component user. Proper and complete
documentation is essential to ensure component reuse, which is the primary
motive for creating components. The list of good documentation practices
includes the following:

• Name the component so that it accurately reflects the abstraction that
it represents. Avoid commonly used names so that the user does not
have naming conflicts when the component is included in a model.

• Name the exported variables so that their meaning is clear to the
component user.

• Create a document that describes the component inputs/outputs,
interface, and functionality. To assist the user, distribute the document
as part of the component. Refer to the Distributing SystemBuild
Components section.

• Label the component inputs and outputs.

Chapter 16 Components

© National Instruments Corporation 16-13 SystemBuild User Guide

Creating Components Using the Component Wizard
To transform a SystemBuild SuperBlock hierarchy into a component,
choose the top-level SuperBlock in the Catalog Browser, and then select
Tools»Make Component. Notice, you will not be able to create a
component if any object in the future component catalog is open in an
editor. The Component Wizard is invoked. Enter the requested information
in each of the fields in the wizard pages to create the component.

Before invoking the wizard make sure that you are prepared to answer the
following questions:

• Does the top-level SuperBlock of the hierarchy have the name that you
want the component to assume?

• Does this component require a custom dialog? If yes, then what is the
name of the MSF that invokes the custom dialog?

• Does this component use mapping? If so, gather the mapping
parameters for this component in a single Xmath partition. The
Component Wizard uses the designated partition to obtain the
parameter dimensions. The parameter values become the default
values for the component mapping parameters. The new component no
longer needs the original Xmath partition or its contents.

Make sure that you prepare the equations you need to map the mapping
variables to the component exported variables. Mapping also can be
performed by invoking a user-defined Xmath command or function.
Write and test your MathScript, and have the calling syntax ready
before you componentize.

• Which of the %Variables and variable blocks in the SystemBuild
SuperBlock hierarchy will be exported through the component
interface?

• Do you want to specify default values for the %Variables other than the
block defaults? If so, gather the variables into a single Xmath partition.
The Component Wizard uses the values of the variables found in the
specified partition. After it’s created, the component no longer needs
or refers to the partition that contains the defaults for the exported
variables.

Modifying Components
After a component has been created, it can be modified (assuming it is not
encrypted).

Chapter 16 Components

SystemBuild User Guide 16-14 ni.com

To modify a component interface, complete the following steps:

1. In to the Catalog browser, select the component, and then select
Tools»Edit Component.

Again, you cannot modify a component if any member object is
currently displayed in the editor. The Component Wizard is invoked.

2. Specify the new interface, and recomponentize the component.

To modify the internal details of a component, change scope to the
component catalog as discussed in the Changing Scope into a Component
Catalog section, and make the necessary changes. When the scope is
changed back to the component parent catalog, the Component Wizard is
invoked because the component interface may need to be altered to reflect
the changes made to its internal details. Failure to recomponentize may
result in inconsistencies if the changes to the component hierarchy affected
the component interface. The steps in recomponentizing a component are
similar to creating a component, as described in the Creating Components
section.

Unmaking a Component
To reduce a non-encrypted component to a SuperBlock hierarchy in its
parent catalog, select the component, and then select Tools»Unmake
Component. This replaces the component in the parent catalog with the
SuperBlocks within the component. If there are any name conflicts, you are
asked to choose whether to keep the existing SuperBlock in the parent
catalog or overwrite it with the one from the component.

Creating and Using Parameter Sets
A parameter set is a set of values for the parameters, or a subset of the
parameters, of a component. Component parameter sets (PSETs) can be
stored in files and loaded into an active SystemBuild session. Parameter
sets make it convenient to set the a component parameters to a known
configuration.

This section describes the creation and loading of parameter sets for
components.

A parameter set is stored in an Xmath file. To create a parameter set file,
use the Psets() function to create a MathScript object that represents the
parameter set. Note, this is not the same as using the Xmath SAVE
command.

Chapter 16 Components

© National Instruments Corporation 16-15 SystemBuild User Guide

Example 16-1 Creating and Saving PSETs

This example creates, saves, and loads a parameter set called
MonsterShocks for a shock_absorber component that has exported the
parameters spring_rate and setting.

1. Define the PSET using the Psets() function.

The Psets function takes as arguments the component name, the
PSET name, and the name and values of variables that will make up
the PSET.

pset1 = Psets("shock_absorber","MonsterShocks",

{setting = 2,spring_rate =3})

The Psets() function formats the inputs, producing a MathScript
object that is assigned to the output variable pset1. Note, the name
MonsterShocks is only visible from the component reference dialog.

2. The variable pset1 now contains the PSET MonsterShocks. The
newly created MathScript object needs to be registered as a parameter
set by issuing the Psets_AddToList command.

Psets_AddToList pset1

The component interface expects a PSET to be the only object in a
single file.

3. To isolate the object in a file, call the Psets_Save command.

Psets_Save pset1, "steve.pset"

After the parameter set has been created and saved into a file, it can be
distributed along with a component as a custom block on a custom palette.
Refer to the What Kinds of Blocks Can Be Customized? section of
Chapter 19, Custom Palettes and Blocks.

Example 16-2 Loading PSETS

To load a PSET as a user parameter set for a component:

Issue the Psets_Load command from Xmath:

Psets_Load "steve.pset"

When the parameter set has been loaded it is visible in the combo box on
the Parameters tab of the Component Block dialog box if the User radio
button is selected. A partition for a component reference must be specified
before in order to activate the Parameter Set section in the Component
Block dialog box.

Chapter 16 Components

SystemBuild User Guide 16-16 ni.com

The parameter sets that are distributed with the component (as a custom
block on a custom palette) are automatically loaded when a partition is
specified for a component reference. The palette parameter sets can be
viewed in the Component Block Dialog Parameter Set area if the Palette
option is selected.

Using SBA with Components
The following is a list of SBA commands that support components.

• DeleteComponent

• MakeComponent

• QueryComponent

• QueryComponentOptions

For a complete description of the commands refer to the MATRIXx Help.

Distributing SystemBuild Components
A component can be distributed either as a model file or as a custom block
on a custom palette.

• If it is distributed as a model file, then you can load the component like
any other model file or add the model file to the File SuperBlock
library by modifying the SBDEFAULTS SBLIBS keyword.

• A component also can be made into a custom block and put on a
custom palette.

The latter method is more versatile because the component creator can
include all the auxiliary files, such as a custom dialog file or documentation
file. For a detailed description of distributing a component as a custom
block, refer to the Custom Blocks section of Chapter 19, Custom Palettes
and Blocks.

Encrypting and Licensing Components
Components can be encrypted using the ENCRYPT command described in
the MATRIXx Help.

The ENCRYPT utility can only be used on a SystemBuild file that contains
a single top-level component. To isolate a component, load the model that
contains the definition of the component that needs to be encrypted. In the
Catalog Browser, select the component, and then select File»SaveAs.

Chapter 16 Components

© National Instruments Corporation 16-17 SystemBuild User Guide

In the Save dialog box SuperBlocks field, choose Selected, and then click
OK. The saved component is the top-level component in the new file.

In addition to a simple encryption, which merely keeps component users
from altering the component, you can optionally specify a license feature
name. Users must then have a valid license key to use it.

Examples
The examples in this section show common component creation tasks.

Encapsulating a SuperBlock Hierarchy
In this example, a simple SuperBlock hierarchy named proto is converted
to a component. A SuperBlock, test, exists in the Main catalog and is
referenced within the SuperBlock proto. This procedure demonstrates
that encapsulating the proto SuperBlock as a component creates a second
definition of test inside the component. Changes made to the SuperBlock
test in the component catalog do not affect the definition of test in the
Main catalog.

1. Load the model encap.dat:

copyfile "$SYSBLD/examples/components/encap.dat"

load "encap.dat"

2. With the SuperBlock proto selected in the Catalog Browser, select
Tools»Make Component.

The component wizard appears.

3. Click Finish to accept the default settings.

In the Main Catalog view, observe that the SuperBlock proto has
moved from the SuperBlocks folder.

4. In the Catalog view, click the Components folder to display the
components in the Contents view.

5. Open the component proto.

6. Navigate into the SuperBlock test. Change the Gain block value
to 99. Click OK.

7. Click the Parent toolbar button to return to the proto component.
Then click the Parent toolbar button again to change the scope back to
the Main catalog.

Since the component has been changed, the Component Creation
Wizard appears as you leave the component scope.

Chapter 16 Components

SystemBuild User Guide 16-18 ni.com

8. Click Finish to repackage the component.

9. From the Catalog Browser, open the SuperBlock ex1, and navigate
into the test SuperBlock.

10. Inspect the gain value in SuperBlock test.

The value is still the original default value of 1.0. Changing the
SuperBlock inside the component had no effect on a SuperBlock
with the same name outside the component scope.

Exporting Component Parameters
This example uses a simple model that contains %Variables and variable
blocks to demonstrate exporting parameters in components.

1. In Xmath, create a partition named ex2, and then make it the current
partition:

new partition ex2

set partition ex2

2. Load the example data:

load "$SYSBLD/examples/components/param.dat"

3. In the Catalog view, expand the SuperBlocks folder, locate the
SuperBlock top, and make a component out of it. In the first window
of the Component Wizard, click Next to accept all default settings.

The exporting definition screen appears.

4. Export the %Variables temperature and humidity, and the variable
block varblock2. At the bottom of the form, enable Replace. Type
ex2 in the partition name field. Click Finish.

Chapter 16 Components

© National Instruments Corporation 16-19 SystemBuild User Guide

5. In the Catalog Browser, open the SuperBlock ex2, and then open the
block dialog box for the component reference top.

Notice that the exported %Variables are visible (refer to Figure 16-2).
Click the parameter name to view the value in the spreadsheet below.

Chapter 16 Components

SystemBuild User Guide 16-20 ni.com

Figure 16-2. Exported Variables in a Component Reference Dialog

Using the Parameter Set Interface
This example uses parameter sets (PSETs) with the component top created
in the Exporting Component Parameters section.

1. In the Xmath command area, make sure you are in partition ex2, and
then define PSETs for the component top:

p1=psets("top","p1",{temperature=9,humidity=5,varblock1=-2});

p2=psets("top","p2",{temperature=3,humidity=4,varblock1=-6});

p3=psets("top","p3",{temperature=6,humidity=2,varblock1=-9});

p4=psets("top","p4",{temperature=7,humidity=1,varblock1=-1});

2. Now register the new PSETs:

psets_addtolist p1;

psets_addtolist p2;

psets_addtolist p3;

psets_addtolist p4;

Chapter 16 Components

© National Instruments Corporation 16-21 SystemBuild User Guide

3. From the SuperBlock ex2, open the top component reference dialog.
In the Xmath Partition field, define a new partition test to receive
copies of the PSET variables. This activates the Parameter Set options
on the Parameters tab. Notice, the fields do not activate until you tab
out of the Xmath Partition field.

4. In the Parameter Set area, select User.

The combo box displays the PSETs defined above.

5. Select a PSET, and then click Load PSET.

PSET values are now available in the block dialog.

6. Select a parameter (either humidity or temperature). In the display area
below, enable Defaults to view the original %Var, or enable Xmath to
view the value from the PSET you loaded.

7. Click OK.

The PSET is unpacked to the partition specified in the form. Any
simulation or code generation uses the parameters in the new partition
for the exported variables.

Chapter 16 Components

SystemBuild User Guide 16-22 ni.com

Interface Mapping
This example demonstrates how a component creator can use mapping to
modify component outputs without changing the model itself.

Assume the temperature in the sample model is in units of degrees
Fahrenheit, but a component user needs an interface that has temperature in
units of Celsius. Mapping can be used to accommodate the user.

1. Load the example data:

load "$SYSBLD/examples/components/param.dat"

2. Create a new mapping partition ex_map. Inside this partition, create a
variable c and give it a value of 8:

new partition ex_map

ex_map.c = 8;

3. Make a component out of the SuperBlock top. In the first dialog box
of the Component Wizard, enable Use Mapping. In the field Xmath
Partition to Get Mapping Variables from, enter ex_map as the partition
from which to get mapping variables. Click Next.

4. In the next dialog, export the parameter temperature only.
Click Next.

The parameter mapping form appears next.

Chapter 16 Components

© National Instruments Corporation 16-23 SystemBuild User Guide

5. In the Parameter field, enter the previously specified mapping
variable c. Click Add.

Enter the following equation in the Mapping Expression field:

temperature = (9/5) * c + 32;

6. Click Finish.

7. Open the block dialog box form for the component reference, and
notice that the Parameters tab displays only the %Variable c with an
initial value of 8.

Chapter 16 Components

SystemBuild User Guide 16-24 ni.com

Using a Custom Dialog
In this example, the Xmath dialog box functions GetChoice() and
GetLine() are used to set up a special dialog box where the user can
change the instance name of the component reference. When the new
instance name is entered, a GetChoice dialog box prompts the user for
the regular SystemBuild component reference dialog.

1. Copy the sample MathScript function to your local directory.

copyfile "$SYSBLD/examples/components/dialog.msf"

2. Load a simple demonstration model:

load "$SYSBLD/examples/components/encap.dat"

3. In the SuperBlock ex1, make a component out of the SuperBlock
proto. In the Component Creation Wizard, enable Xmath Callback.
In the Xmath Command field, type dialog.

Chapter 16 Components

© National Instruments Corporation 16-25 SystemBuild User Guide

4. Click Finish.

5. In the Catalog Browser, open ex1 for editing.

6. Open the component proto block reference.

A single text entry box appears from the Xmath Commands window.
Enter a SuperBlock name, and click OK.

The next dialog box gives you the option of opening the standard
SystemBuild dialog box for the component reference or bypassing it.

© National Instruments Corporation 17-1 SystemBuild User Guide

17
SystemBuild Customization

This chapter details how to customize SystemBuild with the user
initialization file (user.ini) and the resource file (Sysbld).

This chapter contains the following main topics:

• The User Initialization File allows you to customize such items as
editors and menus.

• The SystemBuild Resource File (UNIX) allows you to customize colors
and size and placement of windows.

User Initialization File
The SystemBuild user initialization file (SYSBLD/etc/sysbld.ini)
defines the default printing and editor settings, the menus, and other
resources. You cannot change this file, but you can customize SystemBuild
by creating a similarly formatted file named user.ini that overrides or
adds to sysbld.ini defaults. If your custom user.ini file is placed in
SYSBLD/etc (by someone with root or administrator privileges), all users
see the customization. SystemBuild also reads this file if it is in your startup
directory.

File Format
The basic user.ini file format is shown in Example 17-1. Use Xmath
copyfile command to copy this file to your local startup directory:

copyfile "$SYSBLD/etc/user.ini"

The user.ini file has two parts: a COMMON_SECTION for customizing
environmental options and specifying text editors and a
SUPERBLOCK_EDITOR_SECTION in which you can specify custom menus
for the editor. Your local user.ini file only needs to contain settings that
differ from or override SYSBLD/etc/sysbld.ini. However, your
customized user.ini file must present information in the same order as
that shown in the sample file. At a minimum, you must restart SystemBuild
after any change to user.ini. If your changes involve new scripts or
programs that Xmath must know about, you must restart MATRIXx.

Chapter 17 SystemBuild Customization

SystemBuild User Guide 17-2 ni.com

Note Be sure to make a copy of the sample file before you edit it for your purposes.

Example 17-1 Sample user.ini File

#==

user.ini

#==

SystemBuild Configuration file for User Menus

#--

This file contains settings used to customize the appearance and behavior

of SystemBuild. This file provides examples for creating custom menus.

The example template can be used to specify menu items. Any line in this

file which starts with pound sign (#) is ignored as comment by SystemBuild

#

#==

#==

COMMON_SECTION allows specification of options and text editors

#==

[COMMON_SECTION]

[OPTIONS]

TempDir = "/tmp/"

IconDir = "/usr/local/sysbld/icons"

PaletteDir = "/usr/local/sysbld/palettes"

TextEditor = "/usr/local/bin/emacs"

PrintCommand = "lp -h"

PrinterOption = "-d"

PrinterName = "hp13"

PrinterName = "hp9

[TEXT_EDITORS]

#--

Unix example

#TextEditorItem = CommentEditor

Name = "xemacs"

Path = "/usr/local/bin/xemacs"

Extension = "txt"

#--

PC example

Chapter 17 SystemBuild Customization

© National Instruments Corporation 17-3 SystemBuild User Guide

#TextEditorItem = CommentEditor

Name = "Word Pad"

Path = "C:\Program Files\Windows NT\Accessories\wordpad.exe"

Extension = "rtf"

#==

SUPERBLOCK_EDITOR_SECTION allows specification of custom menus

#==

[SUPERBLOCK_EDITOR_SECTION]

SuperBlock Editor

[MENU]

#--

MenuItem = PulldownMenu

Label = &Custom

Help = User defined Menus

MenuItem = PushButton

Label = ls

Help = Lists the files in the current directory through Xmath

FuncType = Xmath

Function = oscmd ("ls")

MenuItem = Separator

MenuItem = PushButton

Label = pwd

Help = Prints current working directory in Xmath

FuncType = Xmath

Function = oscmd("pwd")

#--

MenuItem = PulldownMenu

Label = &System

Help = User defined System Messages

MenuItem = PushButton

Label = &Xterm...

Help = Brings up an Xterm

FuncType = System

Function = /usr/bin/X11/xterm

Chapter 17 SystemBuild Customization

SystemBuild User Guide 17-4 ni.com

MenuItem = PushButton

Label = &Calendar

Help = Brings up a Calendar

FuncType = System

Function = /bin/calendar

Printer Settings (UNIX)
User initialization file (user.ini) printer settings are ignored on
Windows platforms. They are used for UNIX systems only.

To change the list of printer names and the printer command, edit the
OPTIONS block of the COMMON_SECTION, as shown in Example 17-1. The
PrintCommand field specifies the UNIX print command without the printer
option. The PrinterOption field specifies the option to be used before the
printer name. The PrinterName specifies the names of the available
printers.

Default Text Editor
The default text editor is used when you are typing directly into the Icon tab
or Comment tab text area of dialogs.

Note The comment editors (refer to the Comment Editor section) require different
settings. The comment editors are launched independently rather than used in the block
diagram.

The default text editor programs are (UNIX) vi and (Windows) Notepad. You
can change the default text editor from the .ini file or from your operating
system command line.

To change the default text editor in your .ini file:

In the OPTIONS section, alter the TextEditor definition (refer to
Example 17-1). For example:

TextEditor = "/usr/local/bin/xemacs"

To change the default text editor from your operating system command
line, type the appropriate command:

setenv EDIT_COMMENT editor_name #UNIX

set EDIT_COMMENT=editor_name #Windows

Chapter 17 SystemBuild Customization

© National Instruments Corporation 17-5 SystemBuild User Guide

where editor_name is the name of your editor program (for example,
xemacs or Wordpad). The change takes effect after you close and reopen
SystemBuild.

Comment Editor
Text that you enter into the Comment tab can be used to document your
work and/or generate inputs for the DocumentIt program. SystemBuild
allows you to choose a text editor for the Comment tabs of the SuperBlock,
block, or State Transition Diagram (STD) Bubble or Transition dialogs.
The text editor operates just as though you had invoked it from the
command line. To return to SystemBuild, exit the editor using the editor
normal exit procedure.

You can remove unwanted editors or add new ones as demonstrated in
Example 17-1. Refer to the TEXT_EDITORS block.

The comments are stored as part of the catalog file when the model is saved
or when a real time file (RTF) is generated. For a primitive block (not a
SuperBlock), the comments are attached to the block dialog. Although the
comments document is stored with the model file and cannot be accessed
from outside SystemBuild, you can save the file from within the text editor
so that it can be manipulated or used elsewhere.

A SuperBlock has two dialogs that have different meanings for the way that
documentation is generated.

• Comments in a SuperBlock Properties dialog

The comments document attached to the SuperBlock Properties dialog
box may be referred to as a root document and corresponds to a
computer software component (CSC) or low-level computer software
component (LLCSC) document for purposes of MIL-STD-2167A.

• Comments in a SuperBlock Block dialog

This dialog box pertains to one instance of the SuperBlock—that is , to
just one of the potentially many references to this SuperBlock that may
be scattered about your block diagram. The comments document
attached to this dialog box may be referred to as a leaf document and
corresponds to a computer software unit (CSU) document according to
the requirements of MIL-STD-2167A.

Chapter 17 SystemBuild Customization

SystemBuild User Guide 17-6 ni.com

Custom Menus
You can define and add one or more menus to the menu bar for the
SuperBlock Editor from the user initialization file. They appear before the
standard Help menu in the order that they are defined.

Note You cannot alter the standard SystemBuild menus or their contents, and you cannot
change the Catalog Browser and Palette Browser menu bars.

Your menus might invoke MathScript functions or commands, send a
command to your operating system, or execute a shell script.

Define your custom menus in the platform-independent ASCII file,
user.ini:

• To create a menu, first specify menuItem=Pulldown. Menu Items
that appear on the pulldown menu can be PushButton (a normal
menu entry) or Separator (a dividing line).

• The Label is the text that appears on the menu bar or menu, depending
on the menuItem type.

• The Help field is ignored on Windows platforms. On UNIX systems,
you have access to the message area at the bottom of the editor. When
the cursor is over the labeled menu item, the text is shown in the editor
message area.

• FuncType can be either Xmath or System. If Xmath is specified, the
call in Function is sent to Xmath. If you specify System, the call is
sent to the operating system and a separate system process is started.

• Function is a legal call to Xmath or your operating system. The
FuncType must match this call syntax.

You must restart SystemBuild whenever you modify or introduce a new
user.ini.

A Typical Template for User Menus
A typical user intialization file for menu item declaration is shown in
Example 17-1. You can copy this file from SYSBLD/examples/sbmenu.
The lines that start with the pound sign (#) are comments. The template is
structured into sections and subsections.

Note This template contains UNIX-specific system calls that you can comment out or
delete as necessary.

Chapter 17 SystemBuild Customization

© National Instruments Corporation 17-7 SystemBuild User Guide

Example 17-1 Typical User Initialization File with Custom Menus

#===

user.ini

#===

SystemBuild Configuration file for User Menus

#---

This file contains my personal custom menus.

Any line that starts with pound sign (#) is ignored as # a comment.

#

#===

 [SUPERBLOCK_EDITOR_SECTION]

SuperBlock Editor

 [MENU]

#---

 MenuItem = PulldownMenu

 Label = &Global Diagram Changes

 Help = These items globally change blocks in the current SuperBlock.

 MenuItem = PushButton

 Label = &Renumber

 Help = Renumbers all blocks in current SuperBlock starting with 1.

 FuncType = Xmath

 Function = RENUMBER

#---

 MenuItem = PulldownMenu

 Label = &Miscellaneous

 Help = Miscellaneous functions and commands.

 MenuItem = PushButton

 Label = &ForcedSave

 Help = Force save to an ASCII file named by time: dYYMMDDtHHMMSSsave.asc

 FuncType = Xmath

 Function = FORCEDSAVE

Using the Sample User Initialization File that Calls MSCs
SYSBLD/examples/sbmenu contains the file user.ini and two
MathScripts that are called by the custom menus specified in the
initialization file. Example 17-1 has you load and try files that call MSCs.
It creates two custom menus in your SuperBlock Editor—the Global
Diagram Changes menu and Miscellaneous menu.

Chapter 17 SystemBuild Customization

SystemBuild User Guide 17-8 ni.com

Example 17-1 Using a Sample Initialization File That Calls MSCs

Complete the following steps to try a sample file that calls MSCs:

1. Copy a sample user.ini file and two sample MSCs from the
SystemBuild distribution:

copyfile "$SYSBLD/examples/sbmenu/user.ini"

copyfile "$SYSBLD/examples/sbmenu/forcedsave.msc"

copyfile "$SYSBLD/examples/sbmenu/renumber.msc"

COPYFILE copies the files to your current working directory.

2. Restart MATRIXx.

3. Try loading a model and calling the MSCs.

SystemBuild Resource File (UNIX)
On UNIX systems, the ASCII file SYSBLD/etc/Sysbld contains the
SystemBuild application defaults. To change your SystemBuild colors or
the size and placement of SuperBlock Editor, make a local copy of this file,
and edit it as described in the following sections. If this file is modified in
the SYSBLD/etc directory, the new values become the defaults for all users
who do not have a local copy of Sysbld.

When initializing your configuration, SystemBuild looks first in your
working directory, then in the home directory, and finally in SYSBLD/etc.

Note Release 6.0 and higher only read the Sysbld file (notice the case). If you have a
local copy of an obsolete SysBld file, merge your custom settings into a local Sysbld file,
and then delete the obsolete file.

Controlling Colors
You can adjust colors, sizes, and positions of the SystemBuild editors and
Interactive Simulation (ISIM) window by creating a SystemBuild defaults
file named Sysbld.

Chapter 17 SystemBuild Customization

© National Instruments Corporation 17-9 SystemBuild User Guide

Foreground and Background
Foreground and background colors in the SystemBuild editors and
Interactive Simulation window are each controlled by two variables in the
Sysbld file. The variables are listed in Table 17-1.

The selection of colors that you can use in the screen specifications on
UNIX platforms is listed in the file /usr/lib/X11/rgb.txt, along with
their RGB color specifications.

SystemBuild and ISIM Color Settings
You can define a maximum of 14 colors in Sysbld. Colors are available in
SystemBuild through the color settings in the block dialog boxes. To view
colors for the higher hexadecimal numbers (those represented by an
alphabetical character), select a block, type 9, and then press the apostrophe
key repeatedly until the desired color is displayed. The variables to be
defined for these colors are sysbld.color1 through sysbld.colorE for
SystemBuild editors, and isim.color1 through isim.colorE for
interactive simulation. The color names are the same as for the foreground
and background colors.

Table 17-1. SystemBuild and ISIM Color Defaults

Area Variable Default

Editors sysbld.background white

sysbld.foreground black

Interactive Simulation (ISIM)
Window

isim.background white

isim.foreground black

Chapter 17 SystemBuild Customization

SystemBuild User Guide 17-10 ni.com

Resizing, and Repositioning the Display
Each window position and size are defined by four numbers: the x and y
location of the screen window lower-left corner and the window width and
height. The numbers are percentages of the screen width and height, as
appropriate. Table 17-2 lists the variables and their permissible ranges.

The dimensions are the percentage of the full-screen width or height inside
the border of the window. The maximum values of the vertical percentage
dimensions are slightly lower than the horizontal dimensions to allow
for the wider label border at the top of each window, which is a
system-dependent value equal to about 2% of the screen height. The
minimum width or height of a window is approximately 25% of the full
screen width or height.

Table 17-2. Display Sizing and Positioning Variables

Variable Range Default

Editors

sysbld.percent.x_offset 1 ≤ X ≤ 99 28

sysbld.percent.y_offset 1 ≤ Y ≤ 97 25

sysbld.percent.width 1 ≤ W ≤ 98 70

sysbld.percent.height 1 ≤ H ≤ 96 65

Interactive Simulation (ISIM) Window

isim.percent.x_offset 1 ≤ X ≤ 99 2

isim.percent.y_offset 1 ≤ Y ≤ 97 0

isim.percent.width 1 ≤ W ≤ 98 72

isim.percent.height 1 ≤ H ≤ 96 60

© National Instruments Corporation 18-1 SystemBuild User Guide

18
Custom Icons

This chapter teaches you how to build custom icons for SystemBuild
blocks and for the Interactive Animation palette.

IA Basics
Interactive Animation (IA) is a graphics language for creating icons for
display in the SuperBlock Editor. For example, the icon displayed on a
block in the editor (as opposed to blocks on the Palette Browser, which are
bitmapped) are defined with the IA graphics language. Beyond this, IA
icons have the ability of controlling inputs to and displaying outputs from
a simulation while it is running.

• A simple use for the IA language is to create a static picture to display
in the SuperBlock Editor. You can use the IA language to create a
custom block icon.

• The Interactive Animation module gives you the capability to create
and compile custom icons using the IA Builder and provides additional
tools to aid in creating icons and grouping them on new or existing
palettes or combining them to produce control panels. Compiled IA
source code takes the form of .sog files. A .sog file can be attached
to a custom block via a reference on the Icon tab.

For more information about IA, including use of the IA Compiler, refer
to the Interactive Animation User Guide.

All users can view IA palette(s) from the SuperBlock Editor. Click the IA
toolbar button in the editor toolbar. This action provides access to a set of
five default palettes.

Adding a Custom Icon to a Block Diagram
There are several ways to add an icon to a block diagram.

• Type icon source code into the Icon tab and then set the block icon type
to Custom to see the new icon. Refer to the Creating or Attaching an
IA Source Icon section

• Reference or import an external bitmap. Rrefer to the Importing or
Referencing an External Bitmap section.

Chapter 18 Custom Icons

SystemBuild User Guide 18-2 ni.com

• Attach an icon to a block custom view by specifying the name of a
precompiled icon .sog file in the Icon tab. The Icon tab must contain
the ICON_SOGF command and the ICON_NAME command, each
pointing to an icon that exists on your system and is also specified in
your animation.cfg file (refer to Example 18-2).

• Drag and drop an IA or ISIM icon from the Interactive Animation
palette and place it, centered approximately, on the block icon to which
it is to be attached (refer to Example 18-3).

Sample Icon Source
To view examples of icon source code, look at the source files that create
the five main palettes delivered with IA:

Each file contains all icon definitions for an existing IA palette. These files
are typical of the resources found in SYSBLD/src.

Precompiled .sog versions of these files are found in SYSBLD/etc.
Alarm.sog becomes the sixth palette when alarm processing is turned on
in the local animation.cfg file. Other files found in SYSBLD/etc are:

• isim.sog contains the limited icon set provided for SystemBuild
ISIM. No .src file is furnished for this icon set because it is not
designed to be user-modifiable.

• control.sog defines the IA Builder Control Panel. In SYSBLD/src,
the file control.src is provided to allow you to rearrange the control
panel. Make a copy of control.src, and proceed with caution when
rearranging the control panel.

moni.src Monitor Animation Icons

coni.src Controller Animation Icons

graf.src Graphic Shapes Icons

spec.src Special Animation Icons

orig.src Original Animation Icons

Chapter 18 Custom Icons

© National Instruments Corporation 18-3 SystemBuild User Guide

Defining Custom SystemBuild Icons
You can use the Icon tab in the dialog box of any primitive block to define
your own icon design, reference an external bitmap, or import an external
bitmap.

Importing or Referencing an External Bitmap
You can assign a bitmap display to a block icon. The bitmaps may be BMP,
XPM, GIF or JPEG format. You can use any size bitmap. It’s up to the user
to size the block in a way that best displays the bitmap. You can refereence
a bitmap as an external file or import a bitmap into the block diagram.
If you reference an external bitmap, the SystemBuild data file only stores
the file path and loads up the bitmap when needed. The Icon tab syntax is:

FILE_BITMAP 'path_to_file' [xloc yloc xsiz ysiz]

An imported bitmap becomes part of the diagram. To import an internal
bitmap, the command is:

IMPORT_BITMAP 'path_to_file' [xloc yloc xsiz ysiz]

In both cases xloc, yloc, xsiz, and ysiz are specified in IA graphical
units. An IA graphical unit is approximately the size of one pixel. xloc and
yloc specify the bitmap location within the icon. xsiz and ysiz specify
the dimension of the bitmap in graphical units. If the icon is zoomed or
reduced in the editor, the size of a graphical unit scales accordingly.

Alternatively, you can specify an icon interactively. On the Icon tab, go to
the Generate Bitmap Command area.

Enable either File or Import, and then click the Browse button. Locate the
desired file, and then double-click it. When the file is found, the proper IA
source is generated in the Custom Icon text field.

On the Display tab, change the Icon Type to Custom to view the new icon.

Chapter 18 Custom Icons

SystemBuild User Guide 18-4 ni.com

Creating or Attaching an IA Source Icon
When you click OK to release the dialog, the SystemBuild program
compiles your IA graphics language statements. If the icon code is
syntactically correct, SystemBuild displays the image you have defined.
This image is displayed when the Icon Type is set to Custom. In the
absence of any BEGIN or END section statements, your statements are
assumed to be in the static graphics section by default. Refer to the Icon
Source File section for the sections of the icon definition. Notice that
changing the icon display of the block has no effect on the block operation
or parameters. Refer to Example 18-1.

Example 18-1 Making Your Own Custom Icon

In this example we describe a custom block, compile it, and display it in a
block diagram model. Notice, a custom icon is for display purposes only. It
has no functionality.

1. Load the following file:

load "$SYSBLD/examples/auto/cruise_d.cat"

2. Open the SuperBlock continuous_automobile.

3. When the car model appears, select the engine block (a
LimitedIntegrator block), and press < Enter> or <Return> to open the
dialog box. Select the Icon tab.

4. In the Icon Tab, type the following:

DRAW_RECT 100 100 800 800

SET_TEXT_FONT 14

DRAW_TEXT 500 500 22 '427 CID V8'

Note By default these commands are in the static graphics section of the icon definition.

5. Click OK to release the block and compile the icon.

6. Place the cursor over the block and type s until the icon type changes
to Custom.

Refer to Figure 18-1 for the appearance of the new icon in the block
diagram, along with the Icon tab contents.

When the icon appears, it may appear too small or may be hard to read.
Grab the ID area in the upper right corner and drag in any direction
necessary to remove the distortion.

Chapter 18 Custom Icons

© National Instruments Corporation 18-5 SystemBuild User Guide

Figure 18-1. A User-Defined Icon and Its Description On the Icon Tab

Note that if you attach a custom icon to a block, the code defining the
custom icon appears in the block dialog box Icon tab from that time
forward. Also, you can attach a custom icon to a block by placing the
identification of the .sog file that holds the block definition and the name
of the block into the Icon tab. Refer to Example 18-2 for attaching a custom
icon.

Example 18-2 Attaching a Precompiled .sog File Icon by Name and Filename

In this example, we attach a custom icon (strip chart) supplied by National
Instruments to a primitive block (Gain block) by placing its filename and
icon name in the primitive block Icon tab. When selected as a custom icon,
the strip chart displays a history of the outputs of the Gain block.

1. In the continuous_automobile model, open the accelerometer
block dialog.

This is the Gain block with ID 6.

2. In the Icon field, type:

ICON_SOGF: MI

ICON_NAME: SC1

3. Click OK to release the dialog. If the strip chart does not appear
immediately, place the mouse cursor on the Gain block and type s a
few times until the strip chart can be seen.

Chapter 18 Custom Icons

SystemBuild User Guide 18-6 ni.com

Refer to Figure 18-2 for a view of this icon and the dialog box with the
.sog file and icon name.

Figure 18-2. Strip Chart Icon Attached to a Primitive Block

A third method for attaching a custom icon to a primitive block is by
drag-and-drop. Example 18-3 illustrates how this is done.

Example 18-3 Attaching a Custom Icon Using Drag-and-Drop

The custom icon has no functionality. It merely changes how the model
looks.

1. With the continuous_automobile model displayed, click the IA
icon in the editor toolbar.

2. When the palettes become available, click SP to obtain the Special
Animation Icons palette.

3. Select the Car Inertia block so that you can see the exact block
outlines. Drag the automobile icon until it is just centered over the Car
Inertia block.

Chapter 18 Custom Icons

© National Instruments Corporation 18-7 SystemBuild User Guide

As you can see from the figure above, the icon, once dropped in place,
may appear distorted.

4. Press and hold to grab the ID area in the upper right corner and pull in
any direction necessary to correct the distortion.

5. Open the block dialog, click the Icon tab, and observe the code
produced by this action.

Icon Source File
The format for a source file containing a single icon appears in
Example 18-4 below. Keywords are specified in ALLCAPS. Parameters
follow keywords and are shown in lower case courier. For example, the
keyword DRAW_TEXT has four parameters:

DRAW_TEXT x y mode strings

In source files, parameters are typically integers or reals. String parameters
are enclosed in single quotes ('). You must provide a value for a parameter,
even if it is zero. Comments are shown in the normal text format.

The IDENTIFICATION shown in the third line of Example 18-4 furnishes
an abbreviation for the palette name (MY in the example), followed by a
slash (/) separator and a name that is used to identify the palette in the icons
data base (MY animation icons in the example).

The icon definition arguments (❶ through ➏ in Example 18-4) are
discussed in the Icon Identification section. Sections are delimited with
BEGIN and END. You need not specify all sections. Section syntax and
parameter explanations are discussed in the Animation Statements section.

Chapter 18 Custom Icons

SystemBuild User Guide 18-8 ni.com

Example 18-4 Icon Source File Format

WS_DRAW ICON DEFINITION SOURCE FILE VERSION 4.00

C

IDENTIFICATION: 'MY/MY animation icons'

BEGIN_ICON

ICON_TYPE: number ¹

ICON_NAME: 'Character string in single quotes'

ICON_PRIVILEDGE: priviledge ²

ICON_WIDTH: width ³

ICON_HEIGHT: height ¼

INTEGER_VARIABLE: number ½ initial value œ'Form Prompt'

REAL_VARIABLE: number initial value 'Form Prompt'

STRING_VARIABLE: number initial value 'Form Prompt'

ANIMATION_POINTER: number 'Form Prompt'

OUTPUT_POINTER: number 'Form Prompt'

STATE_POINTER: number 'Form Prompt'

BEGIN_INITIALIZATION_SECTION

C Insert commands to be performed before static draw.

C The following commands are allowed:

C if/else/endif;

C calculate;

C sound_bell;

C sound_key_click;

C do/enddo;

C math_function;

END_INITIALIZATION_SECTION

BEGIN_BACKGROUND_SECTION

END_BACKGROUND_SECTION

BEGIN_STATIC_GRAPHICS

C Insert all static commands performed only at initial window

C Insert non-graphic commands to be performed even if the

C window is not displayed (the window must be loaded,

C however). Typically this section is not used. Background

C processing only works through the USRIA1 interface (USRA1

C UCB and RTMPG,not in ISIM.)

END_STATIC_GRAPHICS

Chapter 18 Custom Icons

© National Instruments Corporation 18-9 SystemBuild User Guide

BEGIN_ANIMATION_GRAPHICS

C Insert commands updated at each data cycle.

END_ANIMATION_GRAPHICS

BEGIN_POINTER_ACTION

C Insert commands performed when the user clicks on the icon.

END_POINTER_ACTION

BEGIN_FORM_DEFINITION

C Form definition for the icon.

END_FORM_DEFINITION

END_ICON

BEGIN_PALETTE_DEFINITION

C The palette definition occurs once

C at the end of the source file.

END_PALETTE_DEFINITION

Icon Identification
This section lists the possible parameters for keywords in the identification
portion, which immediately follows the BEGIN_ICON keyword (refer to ❶
in Example 18-4).

Table 18-1. Parameters for the IDENTIFICATION Portion of the Icon Source File

Keyword Parameter Loc Comments

ICON_TYPE number ❶ The icon identification number for each icon.
This number is used in the
PALETTE_DEFINITION section. If you have
changed the IDENTIFICATION field, and thus
changed the name of the palette, you may use
sequential integers (1...n) for your icons.

ICON_PRIVILEDGE privilege ❷ Normally set to 0.

ICON_WIDTH width ❸ The icon box width in IA graphical units
(100 ∼ 1 cm).

Normally an IA graphical unit is approximately
one pixel, however, if the icon is zoomed or
reduced the size of a graphical unit varies
accordingly.

ICON_HEIGHT height ❹ The icon box height in pixels (100 ∼ 1 cm).

Chapter 18 Custom Icons

SystemBuild User Guide 18-10 ni.com

When defining your own icon, do not use tabs to indent any portion of your
code. Use spaces only.

Types
The following types are possible for integers, reals, and strings. Any
variable can be replaced by an expression that reduces correctly to the
appropriate type of variable.

Typically variables are declared at the top of the icon source file. Refer to
Example 18-4. Each separate type is numbered sequentially starting with 1.
For example, to define a string variable numbered 17, specify S[17].

Hardcoded Integer Type

I[#] Integer variable

Hardcoded Real Types

R[#] Real variable

A[#] Animation pointer (to input vector)

O[#] Output pointer (to output vector)

T[#] Time & hold information (pointer to t-vector)

Hardcoded String Type

S[#] String variable

XXX_VARIABLE initial
value

❺ A number you assign the declared variable. You
refer to the variable using the format Type[#]
where Type is usually a unique character
specifying the type of integer, real, or strings.
Refer to the Types section.

XXX_VARIABLE Form
Prompt

➏ Initial value can be '##', where ## is the
number of characters.

Table 18-1. Parameters for the IDENTIFICATION Portion of the Icon Source File (Continued)

Keyword Parameter Loc Comments

Chapter 18 Custom Icons

© National Instruments Corporation 18-11 SystemBuild User Guide

General Control and Calculation Statements
The following keywords and their parameters can be used in the
ANIMATION_GRAPHICS and STATIC_GRAPHICS sections. Note the use of
the RETURN commands in a few places in these examples. You may use
RETURN at appropriate places in your code to force a return. Executing the
last keyword of a section has the same effect.

.

CALCULATE functions use the pointers v1ptr, v2ptr, and v3ptr. Pointers
can be reals, integers, or strings. You can use CALCULATE functions in any
section of a program:

+ Add

- Subtract

* Multiply

/ Divide

AND Logical operation

OR Logical operation

MAX Maximum of the two args (strings OK)

Table 18-2. Control and Calculation Keywords

Syntax Example

CALCULATE v1ptr = fun v2ptr v3ptr
CALCULATE v1ptr = v2ptr

CALCULATE I[3] = I[4] + I[5]
CALCULATE I[3] = I[4]

MATH_FUNCTION v1ptr = fun v2ptr
v3ptr

MATH_FUNCTION R[1] = ATAN2 [R[2]
R[3]

IF value relation value THEN
ELSE
ENDIF

IF I[3] < 10 THEN
your_statements
ELSE
your_statements
ENDIF

IF value relation value THEN
RETURN
ENDIF

IF I[2] EQ 1[5] THEN
RETURN
ENDIF

DO variable start end inc
RETURN
ENDDO

DO I[2] 1 5 1
your_statement
ENDDO

Chapter 18 Custom Icons

SystemBuild User Guide 18-12 ni.com

MIN Minimum of the two args (strings OK)

MATH_FUNCTION v1ptr = function v2ptr v3ptr

MATH_FUNCTIONs are:

The ATAN2 function uses v3ptr.

IF value relation value THEN

ELSE

ENDIF

IF/THEN values can be real or integers. Strings are also possible. Possible
relations are:

DO variable start end inc

RETURN

ENDDO

variable is an integer representing the counting variable. start and end
are the beginning and ending values in the loop, and inc is the counter
increment.

General Graphic Statements and Coordinate System
These keywords and their parameters can be used in the
ANIMATION_GRAPHICS and STATIC_GRAPHICS sections. Properties
of things drawn with general graphic statements are determined by the
general graphic characteristics settings. Refer to the General Graphic
Characteristic Statements section. Objects are located using a coordinate
system that defines 0,0 as the lower left corner of the screen, and entities
within an icon are located using a similar coordinate system that defines 0,0
as the lower left corner of the icon. Refer to Examples 18-5 through 18-16.

DRAW_RECT x1 y1 width height

DRAW_TEXT x y justify strings

ERASE_TEXT x y justify strings

SIN COS TAN SQRT ABS

ASIN ACOS ATAN ATAN2

EQ or = GE or >= GT or >

LT or <NE or <> LE or <=

Chapter 18 Custom Icons

© National Instruments Corporation 18-13 SystemBuild User Guide

GET_TEXT_SIZE string R[width] R[height]

Returns the width and height of the string
in IA graphical units.

DISPLAY_VALUE iptr x y width dplaces justify

ERASE_VALUE x y width dplaces justify

DRAW_ARC xc yc xr yr start end

DRAW_LINE npoints x1 y1 x2 y2 ... xn yn

ROTATE_LINE ptr xc yc npoints x1 y1 x2

y2...xn yn

RELATIVE_POSITION_LINE xd yd npoints x1 y1 x2 y2 ...

GENERAL_LINE npoints x1 y1 x2 y2... xn yn

VARIABLE_SIZE_BOX dir iptr x1 y1 v1p x2 y2 v2p

VARIABLE_POSITION_LINE dir iptr x1 y1 v1p x2 y2 v2p

Example 18-5 Graphics Draw Rectangle Statement

DRAW_RECT x1 y1 width height

Draws a rectangle where x1 and y1 designate the lower left rectangle
corner, and width and height are the rectangle dimensions, all expressed
in terms of the icon coordinate system. By default, the icon dimensions are
1000 × 1000. These values can be reset using the ICON_WIDTH and
ICON_HEIGHT keywords.

Example 18-6 Graphics Draw Text Statement

DRAW_TEXT x y justify string

Draws the text string starting at the point specified with x and y. (The font
is determined by SET_TEXT_FONT.) The text is aligned on that point
according to the justify parameter, a two-digit value where the tens
column aligns horizontally and the ones column, vertically.

Chapter 18 Custom Icons

SystemBuild User Guide 18-14 ni.com

For example, if justify is 21 the string is drawn centered on the starting
point and top-aligned, because a 2 is in the tens column and a 1 was in the
ones column.

Example 18-7 Graphics Erase Text Statement

ERASE_TEXT x y justify strings

Erases a string created by DRAW_TEXT when given exactly the same
parameters.

Example 18-8 Graphics Display Statement

DISPLAY_VALUE iptr x y width dplaces justify

Displays a value iptr at the point specified by x and y. Placement is
determined by the parameters width (the number of characters), dplaces
(decimal places), and justify. You supply the same two-digit code value
used for DRAW_TEXT justify.

Example 18-9 Graphics Erase Value Statement

ERASE_VALUE x y width dplaces justify

Erases a value created by DISPLAY_VALUE when given exactly the same
parameters.

Example 18-10 Graphics Draw Arc Statement

DRAW_ARC xc yc xr yr start end

Draws an arc centered on the point specified by xc and yc. xr and yr
describe the radius of the arc and start and end give the angle in degrees
at the start and end of the arc. The keyword SET_ARC_TYPE determines the
fill pattern for the arc.

justify digit horizontal (tens) vertical (ones)

1 left top

2 center center

3 right bottom

Chapter 18 Custom Icons

© National Instruments Corporation 18-15 SystemBuild User Guide

Example 18-11 Graphics Draw Line Statement

DRAW_LINE npoints x1 y1 x2 y2 ... xn yn

Draws a fixed line based on coordinate pairs of x,y values, where npoints
is the number of break points in the line and an x,y coordinate pair is
specified for each point in the line. During simulation, if you wish to be able
to change the angle, displacement, or scale of the line, use GENERAL_LINE
instead.

Example 18-12 Graphics Rotate Line Statement

ROTATE_LINE ptr xc yc npoints x1 y1 ... xn yn

Performs the DRAW_LINE function and adds the ability to rotate the line
centered on the point specified by xc. yc. ptr is the number of degrees
of rotation counterclockwise from the horizon (that is, the positive part of
the x-axis).

Example 18-13 Graphics Relative Position Line Statement

RELATIVE_POSITION_LINE xd yd npoints x1 y1 x2 y2 ...

Performs the DRAW_LINE function and adds the ability to place the line
relative to the point specified by xd and yd (the coordinate displacement in
IA graphical units).

Example 18-14 Graphics General Line Statement

GENERAL_LINE npoints x1 y1 x2 y2 ... xn yn

Draws a line based on coordinate pairs of x,y values, where npoints is the
number of segments in the line and an x,y coordinate pair is specified for
each point in the line. A general line can be manipulated with the
SET_ANGLE, SET_SCALE and SET_DISPLACEMENT settings in the General
Graphic Characteristic Statements section.

Example 18-15 Graphics Box statement

VARIABLE_SIZE_BOX dir iptr x1 y1 v1p x2 y2 v2p

Defines a rectangular area whose lower left corner is specified by x1,y1 and
whose upper right corner is specified by x2,y2. It then fills a portion of that
area, creating a box. iptr points to a value you have calculated, indicating
the percentage of the box defined by the x and y values. The box is created
by filling a portion of the area delimited according to v1p, the minimum
range, and v2p, the maximum range. These parameters are usually values

Chapter 18 Custom Icons

SystemBuild User Guide 18-16 ni.com

you have calculated elsewhere. dir can be either 'HOR' or 'VER',
specifying that the filling will proceed horizontally or vertically from the
lower left corner of the area until the portion of the area specified with v1p,
v2p is filled.

Example 18-16 Graphics Variable Position Line Statement

VARIABLE_POSITION_LINE dir iptr x1 y1 v1p x2 y2 v2p

Performs the VARIABLE_SIZE_BOX function but draws a line in the
defined area rather than filling a box.

General Graphic Characteristic Statements
These keywords and their parameters can be used in the
ANIMATION_GRAPHICS and STATIC_GRAPHICS sections:

SET_COLOR color

SET_LINE_TYPE type

SET_LINE_WIDTH width

SET_FILL_PATTERN pattern

SOUND_BELL loudness

SOUND_KEY_CLICK loudness

SET_ARC_TYPE type

SET_TEXT_FONT font type

SET_TEXT_SLOPE angle

SET_LINE_DISPLACEMENT xd yd

SET_LINE_ANGLE angle x y

SET_LINE_SCALE xsc ysc xs ys

Additional details follow.

SET_COLOR color: Sets color to a number from the following list:

0=white 4=cyan 8=orange 12=lt blue

1=black 5=magenta 9=pink 13=purple

2=red 6=yellow 10=yellow-green 14=brown

3=green 7=blue 11=blue-green 15=gray

Chapter 18 Custom Icons

© National Instruments Corporation 18-17 SystemBuild User Guide

SET_LINE_TYPE type: Sets line type to a number from the following list:

1 = solid line 5 = dash-dot 8 = dashed

2 = dotted line 6 = wide-spaced dash 9 = dashed

3 = dashed line 7 = close dots 10 = dotted

4 = close dash

SET_LINE_WIDTH width Specifies line width in pixels. The
width of a normal line is 1 pixel.

SET_FILL_PATTERN pattern Specifies the pixel density of a
filled area. If 0 is supplied, there is
no fill. If 2 is supplied the fill is
solid. Density is also indicated
with numbers between 48 and 62,
which indicate the number of
pixels (ranging from 1 to 15) in a
4 × 4 array. For example, if you
specify SET_FILL_PATTERN 55,
expect a density of 8 pixels.

SOUND_BELL loudness Sets bell volume to an integer
between 0 and 8, where 0 is silent
and 8 is the loudest.

SOUND_KEY_CLICK loudness Sets key click volume to a number
between 0 and 8, where 0 is silent
and 8 is the loudest

SET_ARC_TYPE type Specifies fill type as 0, 1, or 2.
0 indicates empty, 1 indicates a
filled arc, and 2 indicates pie fill.

SET_TEXT_FONT font type Sets the font type with an integer
between 1 and 14. To see what
these fonts look like, bring up the
IA palette GR/GRaphic shapes.
The appearance of these fonts
may vary among platforms.

Chapter 18 Custom Icons

SystemBuild User Guide 18-18 ni.com

SET_TEXT_SLOPE angle Sets the text slope with a number
indicating the angle of the text in
degrees counterclockwise from
horizontal. The angle is a
number representing the degrees
of rotation.

SET_LINE_DISPLACEMENT xd yd Moves a line drawn by
GENERAL_LINE. This keyword
displaces all points in the x and y
directions by the number of IA
graphical Units in xd and yd
(default=0).

SET_LINE_ANGLE angle x y Specifies the angle of a line drawn
with GENERAL_LINE. The
parameters x and y give the x,y
coordinates of the center point of
the rotation (which need not be
the center of the line). The angle
is a number representing the
degrees of rotation.

SET_LINE_SCALE xsc ysc xs ys Expands or shrinks a
GENERAL_LINE and, if desired,
changes its distance from the scale
point at the same time. xs and ys
are reals such that 1 is full size, .5
is half size, and so forth. xsc and
ysc indicate the location of the
scale center point. The default is 0
(centered).

Chapter 18 Custom Icons

© National Instruments Corporation 18-19 SystemBuild User Guide

Animation Statements
The following statements can be used in the ANIMATION GRAPHICS and
POINTER_ACTION sections:

ABSOLUTE_ICON_POSITION xptr yptr

Places the bottom left corner of an icon at the screen coordinates
specified in IA graphical units.

MOVE_ICON xdptr ydptr

Moves/displaces an icon from its current location in the x and y
direction by the specified number of pixels. If both
ABSOLUTE_ICON_POSITION and MOVE_ICON are specified, the
moves take place in the order in which the statements are executed.

MOVE_AREA x1 y1 x2 y2 xd yd

Defines a rectangular area whose lower left corner is found at x1, y1
and whose upper right corner is specified as x2, y2 and then moves the
area so that its lower left corner is at the point specified by xd, yd.

COMPLIMENT_AREA x1 y1 x2 y2 mode

Defines a rectangular area whose lower left corner is at x1, y1, and
whose upper right corner is x2, y2. If mode is 0, the area is made a
complementary color. If it is 1, the area flashes in the current color.

ERASE_AREA x1 y1 x2 y2

Erases a rectangular area whose lower left corner is at x1, y1, and
whose upper right corner is at x2,y2.

REQUEST_POSITION

mode xpos ypos tclick/status button

This keyword allows you to get the position of the pointer and find out
what the mouse is doing.

mode is 0 (previous) when this keyword is used for pointer action, and
1 (current) when used for animation graphics. xpos and ypos store the
location of the pointer.

If mode is 0, tclick stores a value for mouse button action. tclick is 0
if the button is depressed, 1 if single-clicked, and 2 if double-clicked.

If mode is 1, button status is 0 (OK) or 1 (out of window).

If mode is 0, button is a variable identifying the button used. 1 is the
left button, 2 the middle button, and 3 the right button. If no button is
pressed, the variable is 0.

Chapter 18 Custom Icons

SystemBuild User Guide 18-20 ni.com

Pointer Action Statements
The HOT_SPOTS statement is used to define a rectangular area in an icon
that has an associated line or block of code that is to be executed when the
hot spot area is clicked with the mouse:

where:

HOT_SPOTS ptr npts H1-x1 H1-y1 H1-x2 H1-y2

 H2-x1 H2-y1 H2-x2 H2-y2

 Hn-x1 Hn-y1 Hn-x2 Hn-y2

ptr is a value (calculated elsewhere) that identifies the hot spot being
pointed to. npts is an integer specifying how many hot spots there are on
the icon. Each icon hot spot is a rectangular area specified by bottom left
corner (H1-x1,H1-y1) and top right corner (H1-x2,H1-y2).

HOT_SPOTS ptr npts H1-x1 H1-y1 H1-x2 H1-y2

H2-x1 H2-y1 H2-x2 H2-y2

Hn-x1 Hn-y1 Hn-x2 Hn-y2

INQUIRE ptr prompt

LOAD string

CHAIN_DOWN string

CHAIN_UP

INQUIRE ptr
prompt

Creates a dialog box containing a prompt
string you specify. ptr accesses what the user
types into the dialog.

LOAD string Loads a .pic file without bothering to keep
track of previous .pic files

CHAIN_DOWN
string

Loads a .pic file, keeping track of its position
in a hierarchical stack.

CHAIN_UP Reloads the last .pic file.

Chapter 18 Custom Icons

© National Instruments Corporation 18-21 SystemBuild User Guide

Palette Definition
The palette definition for all icons in a given file is placed at the end of
the file. For examples, look at the end of any of the IA .src files in
SYSBLD/src.

BEGIN_PALETTE_DEFINITION

WINDOW_SIZE: width height

PALETTE_OBJECT: type xpos ypos page vars_diff

var_value_pairs

END_PALETTE_DEFINITION

where

For example, the following palette object description,

PALETTE_OBJECT: 3 900 295 5 2 I[2] 4 R[1] 3

creates a new icon based on icon number 3 by changing two default
variables. Integer variable 2 is given a value of 4 and real variable 1 a
value of 3.

width width of window in pixels

height height of window in pixels

type icon type number (❶ in Example 18-4)

xpos x position of icon on window

ypos y position of icon on window

page Page number of palette. This parameter must
be sequential. Numbers can range from 1 to 20
(practical limit) in order to define pages in the
palette.

#vars_diff These parameters allow you to have different
forms of the same icon on the palette without
defining them all separately by allowing you to
create a new icon that is the same as an existing
icon except for changes in its default settings.

var value pairs If a non-zero entry is specified for
vars_diff, the compiler looks for that
number of value pairs to follow.

Chapter 18 Custom Icons

SystemBuild User Guide 18-22 ni.com

Animation Configuration File
You can modify the supplied configuration file SYSBLD/etc/
animation.cfg (shown in Example 18-17) so that IA uses your custom
icons. Do not change anything in the starred (**) banner area. These
definitions are defaults. Rather, copy definitions from the default area and
place them in the user definition area below the line reading STATE YOUR
DEFINITIONS BELOW, remove the asterisks, and make your changes to the
copied material. User definitions, such as the typical ones shown below,
supersede the defaults, so there is no need to remove or change the defaults.

Definitions in the default area that contain ==> are not activated and may
be used as comments. For example, copy the line

* BUILD_LOAD_PICTURE ==> 'pict1.pic'

to the user definition area and remove ==> and the asterisk and add a colon
as shown below with the spacing exactly as shown:

BUILD_LOAD_PICTURE: 'pict1.pic'

Example 18-17 Typical Animation Configuration File

WS_DRAW CONFIGURATION FILE (ANIMATION.CFG) VERSION 6.0

**

* The first line of the config file must be: *

* WS_DRAW CONFIGURATION FILE (ANIMATION.CFG) VERSION X *

* All meaningful lines must start with the key words and COLON, *

* followed by the name of the file in single quotes. *

* By convention, files are lower case, keywords and others *

* are upper case. Blank and comment lines are allowed. *

* *

* THESE KEYWORDS MAY HAVE MORE THAN ONE FILE POSSIBLE: *

* *

* ICON_DATA_FILE ==> 'project1.sog' *

* ICON_DATA_FILE ==> 'project2.sog' *

* ICON_DATA_FILE ==> 'project3.sog' *

* *

* BUILD_LOAD_PICTURE ==> 'pict1.pic' *

* BUILD_LOAD_PICTURE ==> 'pict2.pic' *

* BUILD_LOAD_PICTURE ==> 'pict3.pic' *

* *

* PROCESS_PICTURES ==> 'proc1.pic' *

* PROCESS_PICTURES ==> 'proc2.pic' *

* PROCESS_PICTURES ==> 'proc3.pic' *

Chapter 18 Custom Icons

© National Instruments Corporation 18-23 SystemBuild User Guide

* *

* THESE KEYWORDS INCLUDE THE FOLLOWING DEFAULTS: *

* *

* ICON_DATA_FILE: 'etc:isim.sog' *

* ICON_DATA_FILE: 'etc:moni.sog' *

* ICON_DATA_FILE: 'etc:coni.sog' *

* ICON_DATA_FILE: 'etc:graf.sog' *

* ICON_DATA_FILE: 'etc:spec.sog' *

* ICON_DATA_FILE: 'etc:orig.sog' *

* ICON_DATA_FILE: 'etc:alarm.sog' *

* *

* ICON_SOURCE_FILE: 'myicon.src' *

* *

* BUILD_CONTROL_PANEL: 'etc:control.sog' *

* *

* SAVE_FILE_FORMAT: 'ASCII' or 'BINARY' or 'MATRIX' *

* *

* PICTURE_SCALE_FACTOR: '1.0' (+ relative, - absolute) *

* *

* *

* THE FOLLOWING COMMANDS SHOULD ONLY BE USED FOR HARDWARE *

* *

* I/O_PROCESSING ==> 'I/O PROCESSING ON' *

* *

* CODE_GENERATION_OUTPUT_FILE ==> 'pict.ada' *

* *

* ADA_LIBRARY ==> 'pict.alb' *

* *

* FREQUENCY_SCALE_FACTOR ==> '1.0' *

* *

* HARDWARE_CONNECTION_EDITOR_FILE ==> 'pict.ioc' *

* *

**

* *

* STATE YOUR DEFINITIONS BELOW *

* *

**

ICON_SOURCE_FILE: 'myicon.src'

ICON_DATA_FILE: 'myicon.sog'

BUILD_LOAD_PICTURE: 'pict.pic'

SYSTEM_BUILD_RTF_FILE: 'pict.rtf'

SIMULATION_DATA_FILE: 'pict.sim'

SAVE_FILE_FORMAT: 'ASCII'

Chapter 18 Custom Icons

SystemBuild User Guide 18-24 ni.com

ALARM_PROCESSING: 'ALARM PROCESSING OFF'

ALARM_WINDOW_PICTURE: 'alarm.pic'

Note that the last items listed are the only changes from the Release 6.0
distribution version of the file.

Important Animation Configuration Keywords for Customized Icons
This section describes the animation.cfg keywords you might need
to alter:

ICON_DATA_FILE: 'myicons.sog'

You supply the compiled and translated source file that defines which
icons are available in IA.

PROCESS_PICTURES:

List all the *.pic files you want to access while running IA at run
time. Use the Process icon to access *.pic files listed here.

ICON_SOURCE_FILE: 'myicons.src'

Supply the name of the source file that contains your icon definitions.
When you have finished creating and debugging your icons, create a
new .src and .sog file so that you can use your new icons.

BUILD_LOAD_PICTURE:

Allows you to give the default (first) file you want supplied (displayed)
when SAVE PICT or LOAD PICT is chosen from the IA Builder control
panel. Making your file the default saves time if this is the primary icon
you use.

SYSTEM_BUILD_RTF_FILE:

Give the default file you want supplied when you select RTF NAMES
from the animation control panel. The *.rtf file is the run-time file
your SystemBuild file generates. It must be loaded into IA before
connections can be made. Entering the name of your *.rtf here can
save time.

Chapter 18 Custom Icons

© National Instruments Corporation 18-25 SystemBuild User Guide

Icon Source File for Customized Icons and New Palettes
The icon source file (identified by ICON_SOURCE_FILE) contains the
keyword IDENTIFICATION:

IDENTIFICATION: 'up to 30 Characters'

Each time you start a new palette, change this field to a new identifier,
but keep it under 31 characters. If you don’t change the name you
might encounter errors that are the result of conflicting ICON_TYPE
numbers (refer to ❶ in Icon Identification).

Building Your Own IA Custom Icons
Figure 18-3 illustrates the steps for building custom IA icons. This process
is summarized below. Refer to the Interactive Animation User Guide for a
detailed explanation.

Figure 18-3. Building Custom IA Icons

Complete the following steps to build custom IA icons:

1. Use a text editor to edit a copy of one of the icon .src files that come
with IA. Change the IDENTIFICATION: field to something unique
and save the file with a different name. For example, infile.src.
The identification is the name of the new palette whose icons’ source
statements are contained in infile.src.

Source Files
*.src

Picture File
*.pic

IA Compiler
ia -c

Configuration
animation.cfg

Icon Tables
*.sog

Interactive
Picture Builder

ia

save load

Chapter 18 Custom Icons

SystemBuild User Guide 18-26 ni.com

2. Using your version of the .src file as a template, you may now modify
existing icons or build a new one.

The syntax rules of the source code language are defined earlier in this
chapter.

3. Create and debug the compilation of a single icon in a separate file
before adding it to the palette .src file.

4. Add the icon to the palette .src file, and specify its position on a
palette page using the PALETTE DEFINITION keyword at the end
of the .src file.

5. After you have your icon in source code, run the IA compiler by
typing:

ia -c infile.src outfile.sog a/b

For more on the IA compiler, refer to the Interactive Animation User
Guide.

6. Copy the file SYSBLD/etc/animation.cfg to your local directory.
Note that if you are testing icons within SystemBuild ISIM, you must
start Xmath from the directory containing this local copy of
animation.cfg.

7. Add the line ICON_DATA_FILE: 'outfile.sog' to the user
definition portion (towards the end) of animation.cfg.

When you bring up IA you will see the new icon in the palette you
created.

© National Instruments Corporation 19-1 SystemBuild User Guide

19
Custom Palettes and Blocks

The Palette Browser organizes blocks in logical groupings represented as
tree nodes (shown on the left side of the Palette Browser). Blocks in the
current grouping are shown on the right.

This chapter describes how to customize the Palette Browser tree structure
(with custom palettes) and contents (with custom blocks). The tree
structure can have multiple levels, each defined by a separate palette file.
Palette files can contain personalized organizations of blocks predefined by
National Instruments, customized versions of predefined blocks, and other
palettes. A custom block is a block that has been saved so that it includes
specified parameter values, labels, or names. Functional blocks, STDs,
SuperBlocks, components, and DataStores can become custom blocks.

Custom Palettes shows how to create and open a palette that uses
predefined blocks. Custom Blocks shows how to create a custom block,
including how to add special startup, Help, and bitmap files. Examples
show how to incorporate custom blocks into custom palettes and then open
them in the Palette Browser. Supporting Commands and Functions
discusses SBA support for custom blocks and palettes.

Custom Palettes
By default, the Palette Browser displays all predefined blocks in the palette
Main. The Main palette contains a set of palettes that each contain a
collection of blocks with similar properties (Algebraic, Dynamic, and so
forth). You can create your own customized palette file that contains blocks
or palettes organized as you see fit. You can add or delete customized
palettes from the existing tree structure. Each tree node in the Palette
Browser is defined by a separate custom palette file. To create multiple
levels in the tree hierarchy, define a new palette file for each level.

Creating Palette Files
A palette file is composed of lines of palette items. Each palette item points
to a built-in block, a custom block, or another palette file. Example 19-1
shows how to create a simple custom palette file.

Chapter 19 Custom Palettes and Blocks

SystemBuild User Guide 19-2 ni.com

Example 19-1 Trivial Custom Palette Example

Complete the following steps to create a new palette that shows only the
Dynamic blocks palette and the Gain block:

1. Create a palettes directory, and set your current working directory
to it.

2. In the palettes directory, create a text file named example.pal that
contains the following two lines:

blockdirectory="ISI_Gain" title = "My Gain"

palettefile="$SYSBLD/palettes/dyn.pal" title = "My

Dynamic"

Save the file.

3. Open the Palette Browser. Select File»Open. Select example.pal.
Click OK.

The new palette appears under the heading example. Click example,
and the National Instruments Gain block appears to the right.

4. Double-click the label example.

The Dynamic palette appears in the left pane.

5. Click My Dynamic.

 Its blocks appear in the right pane.

6. Highlight example, and then select File»Close to close the palette.

The example tree structure is very simple. A base node, example, has one
node, My Dynamic, attached to it. Example 19-2 shows how to create
multiple levels in the Palette Browser hierarchy.

Example 19-2 Trivial Custom Palette Example with Nesting

Complete the following steps to create multiple levels in the Palette
Browser hierarchy:

1. In the current working directory (palettes), create a text file named
levelone.pal that contains the following line:

palettefile="leveltwo.pal"

2. Create a text file named leveltwo.pal that includes the following
line:

palettefile="example.pal"

You created example.pal in Example 19-1.

Chapter 19 Custom Palettes and Blocks

© National Instruments Corporation 19-3 SystemBuild User Guide

3. Open the Palette Browser.

a. Select File»Open. Select levelone.pal. Click OK.

The new palette appears with the heading levelone.

b. Double-click levelone.

A node with label leveltwo appears.

c. Double-click leveltwo.

The label example appears as a child of leveltwo.

d. Click example, and the National Instruments Gain block appears
to the right.

e. Double-click example (or click the + next to the label example)
to see the Dynamic palette as a node below.

f. Click My Dynamic, and the dynamic palette blocks appear to the
right.

You can call palette files recursively—for example, leveltwo can
contain an entry for levelone. When recursion is detected, the Palette
Browser displays a single level of recursion.

4. Highlight levelone, and then select File»Close to close the palette
example.

Note Close can only remove entire palettes. There is no way to close off leveltwo and
keep levelone.

Palette File Syntax
The examples above show the basic syntax of all palette files. Palette files
can contain statements that define blocks (blockdirectory) and lines
that refer to other nested palette files (palettefile).

The exact statement syntax for palette entries is:

blockdirectory = "BlockDirectory" title="block_title_on_palette"
help = "pointer_to_html_file" icon="pointer_to_bitmap_file"

palettefile = "pointer_to_palette_file" title="palette_title"

• Each statement must be on a single new line. (Above we show a
continued line, but in the file it must be a single line per item.) No
commas or line terminators—for example, a semicolon—are required.

• Valid keywords are title, help, and icon. These keywords are
explained in Step 2: Add a Custom Block to a Custom Palette File.

• Block and palette statements may be interspersed in the file.

Chapter 19 Custom Palettes and Blocks

SystemBuild User Guide 19-4 ni.com

• Comments are not supported in custom palette files.

• If the help and icon files are specified in the creation of the custom
block, the path is not required in the palette file. (Refer to Step 2: Add
a Custom Block to a Custom Palette File.)

Here are some examples of valid custom palette file statements:

palettefile = "/homes/test/mypal.pal"

blockdirectory = "ISI_LinearInterp"

blockdirectory = "F:\blocks\custgain"

palettefile = "../mypal.pal" title = "test"

palettefile = "trg.pal"

PaletteFile
palettefile points to a palette file. You can reference built-in palettes
with the following palettefile values:

sysbld.pal Includes all of the default SystemBuild palettes

sup.pal SuperBlock

alg.pal Algebraic

pwl.pal Piece-wise Linear

dyn.pal Dynamic

imp.pal Implicit

trg.pal Trigonometric

pel.pal Power Exponential Logarithmic

trn.pal Coordinate Transformation

sgn.pal Signal Generator

log.pal Logical

usr.pal User Programmed

kbb.pal Artificial Intelligence

ntp.pal Interpolation

Chapter 19 Custom Palettes and Blocks

© National Instruments Corporation 19-5 SystemBuild User Guide

In addition to National Instruments palettes, palettefile also can be the
path to a palette file. The path can be in any of the following formats:

1. An absolute path, such as c:\palettes\my.pal on Windows, or
/homes/SunPlatform/users/usr1/palettes/my.pal on
UNIX.

2. A relative path from the location of the current palette file.

3. A path prefixed by an environment variable, such as
$PALETTE_PATH/palettes/my.pal, or
%PALETTE_PATH%\palettes\my.pal, where PALETTE_PATH is
the path to a palette file.

Note The UNIX style works inside SystemBuild for Windows, as well. If you are pointing
to National Instruments palette files, PALETTE_PATH is SYSBLD.

BlockDirectory
blockdirectory is used to specify native National Instruments blocks
and custom blocks (refer to the Custom Blocks section). To specify a
default block, simply prepend ISI_ onto the name of the block. Refer to
the Using Relative Paths for Icon Files section for hints on using graphics
in a custom palette.

Defining the Default SystemBuild Palette
Instead of opening a custom palette file every time SystemBuild is started,
you can define a file named startup.pal that is read automatically when
SystemBuild starts. When the Palette Browser is started, it looks for the
filename startup.pal in different directories in the following order:

1. The current working directory.

2. %HOME%\xmath on Windows or $HOME/xmath on UNIX.

3. The path defined by the environment variable %PALETTE_PATH% on
Windows, or $PALETTE_PATH on UNIX.

sc.pal Software Constructs

mtx.pal Matrix Equations

iai.pal Interactive Animation (requires separate license)

arc.pal Archived (obsolete blocks)

Chapter 19 Custom Palettes and Blocks

SystemBuild User Guide 19-6 ni.com

You must manually define PALETTE_PATH locally. It is not
predefined at install. However, $SYSBLD is predefined but is only
available in the product.

4. The default SystemBuild palette directory, %SYSBLD%\palettes on
Windows, or $SYSBLD/palettes on UNIX.

Example 19-3 shows you how to create a new startup palette file.

Example 19-3 Startup Palette File

Complete the following steps to create a new startup palette file:

1. Copy the file example.pal created in Example 19-1 to
startup.pal.

2. Exit SystemBuild, and then restart it.

You can see that the label Main now contains only the blocks you
defined in startup.pal. The default National Instruments palette is
not loaded.

3. If you want to add the default National Instruments palette, add the
following line to startup.pal, and then repeat step 2:

palettefile="$SYSBLD/palettes/sysbld.pal"

Closing and Reloading the Default Palette
You can remove and then reload the default palette at any time.

To close the default palette, complete the following steps:

1. Highlight the label Main.

2. Select File»Close, or click the Close Palette toolbar button to remove
the palette.

To reload the default palette, select File»Load SystemBuild Palette.

Custom Blocks
This section describes how to create and instantiate custom blocks.
A custom block can start as:

• One of the predefined blocks provided with SystemBuild

• A SuperBlock or component created from predefined blocks

A block is a good candidate for becoming a custom block if you find
yourself repeatedly setting the same parameters for a given block type.

Chapter 19 Custom Palettes and Blocks

© National Instruments Corporation 19-7 SystemBuild User Guide

With the Custom Block Wizard, you can save block parameters as part of a
custom block definition.

What Kinds of Blocks Can Be Customized?
Any block, SuperBlock, STD, DataStore, or component present in the
SuperBlock Editor may be defined as a custom block. Refer to the
following list.

• Basic block—If a block is selected, you can define any combination
of labels, parameter values, data types or other block attribute to be the
default values for the custom block. If blocks such as UserCode blocks
are used, the source file and other dependent files are stored with the
custom block.

• SuperBlock—If a SuperBlock is used for the custom block, the entire
SuperBlock hierarchy is included.

• STD—The custom block contains the entire state diagram.

• DataStores—DataStores are similar to basic blocks. You can define
any DataStore attribute to the default parameters of the custom block.

• Components—Components can be transformed to custom blocks.
Parameter sets and a custom dialog box may be associated with the
component.

Creating a Basic Custom Block
Creating and using custom blocks is a three-step process. First, use the
Custom Block Wizard to create the custom block. The results of this step
are stored in a directory defined by data entered in the wizard. Second,
modify a custom palette file to include the new custom block. Third, open
and display the custom palette file in the Palette Browser.

This section describes the procedure to create and use a basic custom block.
Subsequent sections show how to create custom blocks with additional
features.

Complete the following steps to create and use a custom block:

1. In the SuperBlock Editor, create or select a block that has the
properties you want to reuse.

2. Create a custom block using the Custom Block Wizard.

a. Select Edit»New Custom Block to bring up the Custom Block
Wizard.

The Custom Block Wizard displays multiple panels to specify
information about the files related to the custom block.

Chapter 19 Custom Palettes and Blocks

SystemBuild User Guide 19-8 ni.com

Figure 19-1. Custom Block Wizard Fields

By default, the Block Name field of the Custom Block Wizard
shows the name of the block selected in the editor.

b. Accept or change the Block Name field.

If no name is specified, the wizard displays the block type in the
name field. The block name is used to name a subdirectory in the
directory specified in Parent Directory.

c. In the Parent Directory field, type in the location where the new
custom block subdirectory is to be created. If you want your files
to be portable, specify a relative path, as discussed in the Using
Relative Paths for Icon Files section and as shown in Figure 19-1.
Press the <Enter> or <Return> key to update the Block Directory
field.

The default is the current Xmath working directory.

d. Place a checkmark in one or more checkboxes to indicate that you
have auxiliary files you want included in the block.

e. Click Next if you have auxiliary files. Otherwise, click Finish.

The Custom Block Wizard creates a new directory to contain any
custom block files.

3. Add your custom block to a custom palette file (a text file with a .pal
extension). Using the syntax discussed in Palette File Syntax, define a
single line in the custom block palette file for each new block—for
example:

blockdirectory = "blocks/icongain" icon = "icongain.bmp"

4. Open the custom palette file in the Palette Browser.

Chapter 19 Custom Palettes and Blocks

© National Instruments Corporation 19-9 SystemBuild User Guide

Example 19-4 shows you how to create a custom Gain block for your first
custom block.

Example 19-4 Simple Custom Block Example

To create a custom Gain block, complete the following steps:

1. Set your current working directory to the palettes directory that you
created in a previous section.

2. Create a new SuperBlock. Add a Gain block to the SuperBlock. Name
the block customgain and make the gain value 100. Do not worry
about connections.

3. Create a custom block using the Custom Block Wizard.

a. Select the Gain block and then select Edit»New Custom Block.

The Custom Block Wizard opens.

b. Deselect any of the checkboxes currently enabled in the files area.

c. Enter mygain for the Block Name.

d. Enter blocks for the Parent Directory.

If you do not have this directory, allow SystemBuild to create it
for you.

e. Click Finish.

The new custom block directories are created within the parent
directory: palettes/blocks/mygain.

4. Create the palette file example2.pal that contains the following
lines:

blockdirectory="blocks/mygain"

blockdirectory="blocks/mygain" title = "gain100"

5. Start the Palette Browser, and open the example2.pal file.

Your new custom block palette appears under the label example2.

The custom block appears twice in the palette. The first block displays
the name of the directory, mygain, because no title was specified. The
second block displays the string specified with the title keyword,
gain100.

6. Drag the custom block off the palette into the SuperBlock Editor, and
verify that is has the same attributes as the block from which you made
the custom block.

Chapter 19 Custom Palettes and Blocks

SystemBuild User Guide 19-10 ni.com

Creating More Sophisticated Custom Blocks
In addition to the basic features listed above, each custom block may
optionally have defined a dependent file, a custom Help file, an icon that
appears in the Palette Browser, an icon that appears in the SuperBlock
Editor, a startup file, and a parameter set. You define all of these files, with
the exception of the bitmap that appears in the editor window, in the
Custom Block Wizard. Refer to the Defining Custom SystemBuild Icons
section of Chapter 18, Custom Icons, and the Using Relative Paths for Icon
Files section of this chapter for specifying a custom icon for the
SuperBlock Editor.

The general procedure for defining custom blocks is provided in the
following sections.

Step 1: Create a Custom Block Using the Custom
Block Wizard
1. Specify the Block Name and Parent Directory in the Custom Block

Wizard. Place checkmarks in the checkboxes in the lower section of
the window that indicate the files that are associated with the custom
block you are creating—Dependent, Custom Help, Icon (bitmaps),
Startup (MSF), Psets. Click Next to access the page for the first
file type.

2. On the appropriate file list page, click the Browse button. This brings
up the file dialog box and allows you to select the file to be added to
the list. Alternatively, type in the full path to the file directly in the
Custom Block Wizard. Click the Add button to add this selected file to
the list. When you select the file to be added to the list and click Add,
the full path name of the file is displayed in the Custom Block Wizard.

To delete a file from the list, click the file entry, and then click the
Delete button.

3. Click Next to add other files. Click Finish, or click Cancel to cancel
the process.

Step 2: Add a Custom Block to a Custom Palette File
blockdirectory = Path_BlockName [[keyword=value] [keyword=value]...]

The valid keywords are:

title Specifies the title of the block to be displayed in the Palette
Browser.

Chapter 19 Custom Palettes and Blocks

© National Instruments Corporation 19-11 SystemBuild User Guide

Some examples for the syntax of the block objects are:

ISI_gain

../custGain

/homes/pal/custGain title="Gain"

c:\users\user1\palettes\custGain title="Gain"

/homes/pal/blkdir block="sig_1.blk"

icon="sig_1.platform"

Use a relative path if portability is required. Refer to Using Relative Paths
for Icon Files section for more information.

Step 3: Open the Custom Palette File
Open the custom palette file in the Palette Browser.

Including a Startup MathScript File with the Custom Block
When a custom block is instantiated, an optional MathScript function
defined for the custom block in the Custom Block Wizard can execute. This
MathScript function (MSF) file must have the same name as the custom
block. For example, if the custom block is called csi2, then this MSF file
must be called csi2.msf. The MSF provides last-minute customization of
the block before it is drawn in the editor window. The startup function must
have the following interface:

function [result] = funName(sbname, block_id)

....function body.....

endfunction

block Specifies the block file to be loaded for the block object to
be displayed. This is necessary if you have multiple block
files in the custom block directory.

help Specifies the custom Help file to be used for displaying
help for the custom block. The default name of the Help
file is block_name.html. A file specified using this
keyword takes precedence over a default Help file.

icon Specifies the bitmap shown for the block while it is on the
Palette Browser. This file can be platform dependent. If the
filename is specified as name.platform, then the name is
automatically interpreted to be name.bmp on Windows
platforms and name.xpm on UNIX platforms.

Chapter 19 Custom Palettes and Blocks

SystemBuild User Guide 19-12 ni.com

Refer to the SysbldEvent section for more information.

We will now extend the simple gain custom block to include a startup file
using Example 19-5. The startup file simply changes the color of the block
based on user input.

Note The startup file and the custom block must have the same root name.

Example 19-5 Custom Block Example with Startup MathScript File

To include a startup MathScript file, complete the following steps:

1. In your local directory, create a text file named startgain.msf that
contains the following lines:

function [result] = startgain(sbname, block_id)

color = getchoice("Choose a color:", ["red", "green"]);

modifyblock block_id, {color = color};

endfunction

This function raises a dialog box to prompt you for a block color
whenever the startgain custom block is dragged from the palette.

2. Create a test SuperBlock. Add a Gain block to the SuperBlock. Name
it startgain, and set the value of the gain to 200.

3. Select the Gain block, and then select Edit»New Custom Block.

The Custom Block Wizard opens.

a. Enter startgain for the Block Name. Enter a valid name for the
Parent Directory—for example, blocks.

b. Place a checkmark in the Startup (MSF) checkbox and disable all
other file checkboxes.

c. Click Next.

d. In the Startup Files dialog box, use the browser or enter the path
directly to the file startgain.msf. Select Add to complete the
selection.

The full path name of the file appears in the lower window.

e. Click Finish.

The new custom block directories are created within the parent
directory. The file startgain.msf is also copied to the custom
block directory.

4. Edit an existing palette file, example.pal, to include startgain:

blockdirectory = "blocks/startgain” title = "gain200"

Chapter 19 Custom Palettes and Blocks

© National Instruments Corporation 19-13 SystemBuild User Guide

5. Start the Palette Browser, and open the example.pal palette file.

Your new custom block file appears under the label example.

6. Click example, and drag the custom block off the palette into the
SuperBlock Editor.

A small Xmath dialog box opens.

7. Enter one of the options, and click OK.

The Gain block with the appropriate color is drawn in the editor
window.

Including a Custom Help File with the Custom Block
HTML files that form the custom Help for the custom block can be
specified in the Custom Block Wizard. Since these files are platform
independent, the Platform combination box is not available while
specifying these files. Help can be a file hierarchy, complete with graphic
files. The name of the top-level Help file should be block_name.html,
where block_name is the name of the block. If the name of the top-level
file is not same as the block name, then its name must be specified in the
palette file as described in Step 2: Add a Custom Block to a Custom Palette
File.

We will now extend the simple gain custom block to include a Help file
using Example 19-6.

Example 19-6 Simple Custom Block with Help

To include a Help file with the custom block, complete the following steps:

1. In your current directory, create the file helpgain.html. Enter the
following lines into the file:

<pre>

Hello world. This is Help for my helpgain block.

</pre>

Save the file.

Note The extension must be .html because.htm is not accepted on all systems.

2. Create a new SuperBlock. Add a Gain block to the SuperBlock and
give it some unique properties: Name = helpgain, Gain = 99.

Chapter 19 Custom Palettes and Blocks

SystemBuild User Guide 19-14 ni.com

3. Select the Gain block, and then select Edit»New Custom Block.

The Custom Block Wizard opens.

a. Enter helpgain for the Block Name. Enter a valid name for the
Parent Directory—for example, blocks.

b. Place a checkmark in the Custom Help checkbox and disable all
other file checkboxes.

c. Click Next.

d. In the Startup Files dialog, enter the path to the file
helpgain.html or use the browser. Select Add to complete
the selection.

e. Click Finish.

The new custom block directories are created within the parent
directory. Your simple Help file is copied to the Help subdirectory
in the custom block directory.

4. Modify or create the palette file example.pal. Add the following line
to the file:

blockdirectory = "blocks/helpgain” title = "gain99"

5. Start the Palette Browser, and open the example.pal file.

Your new custom block appears under the label example.

6. Click example, and drag the custom block off the palette into the
SuperBlock Editor.

7. Open the Block dialog box for the custom block. Click Help.

Your HTML Help text is displayed in a local Help window.

Additional Custom Block Features
As mentioned above, each custom block may optionally have defined a
dependent file, a custom Help file, a bitmap that appears in the Palette
Browser, a bitmap that appears in the editor, a startup file, and a parameter
set. We have provided you examples of creating a simple startup file and a
simple custom Help file. The process for providing the remaining files in
the Custom Block Wizard is the same. Therefore, we simply define the
other files that you can define in the wizard below.

Dependent File
The files that are associated with a UserCode block (UCB), a BlockScript
block, and so forth can be specified in the Custom Block Wizard. You can
specify the platform dependency by using the Platform combination box to
specify the appropriate platform for the selected files.

Chapter 19 Custom Palettes and Blocks

© National Instruments Corporation 19-15 SystemBuild User Guide

Icon for the Palette Browser
You specify the icon file(s) used for the custom block while it is in the
Palette Browser in the palette file with the icon keyword. Refer to the
Palette File Syntax section for more information. You can use the Icon
option in the Custom Block Wizard to copy the correct icon file(s) to the
custom block directory. When you reference this icon in the palette file
with the icon keyword, no path is necessary because it is copied to the
correct location.

The Platform combo box in the Custom Block Wizard is disabled for icon
files. Files with the extension .bmp are used in the Windows environment,
while files with the extension .xpm are used on all UNIX platforms. If the
file has the extension .platform, then SystemBuild automatically
interprets the extension as .bmp on Windows platforms and .xpm on UNIX
platforms.

Thus, if you are using SystemBuild on more than one platform, supply both
myicon.bmp and myicon.xpm in the wizard. Then use icon =
"myicon.platform" in the palette file.

Note Custom icons created with IA do not display on the palette.

Parameter Sets
Parameters are comprised of one or more files containing values pertinent
to the block. Parameter sets allow you to select different prespecified
values for the block. A custom block can have multiple parameter sets.

Using Relative Paths for Icon Files

Caution Although the SuperBlock Editor displays all supported bitmaps on any
SystemBuild platform, the Palette Browser does not. Furthermore, icon file paths in
palettes are platform dependent. If you have an incompatible path in a palette file, you will
not be able to instantiate your block in the SuperBlock Editor because the icon file cannot
be found.

In the Icon for the Palette Browser section, we discuss providing icons for
both UNIX and Windows in the Custom Block Wizard and then using the
.platform extension in the palette file to specify the icon so that the same
palette file can be used on multiple platforms. You can use the same icon
file for display in the editor and the palette as long as relative paths are used.
Forward slashes are acceptable for either Windows or UNIX in this context.
For example, look at the directory structure in Figure 19-2.

Chapter 19 Custom Palettes and Blocks

SystemBuild User Guide 19-16 ni.com

Figure 19-2. Sample Directory Structure with Accompanying Palette File

The current working directory is /palettes, which you set in Xmath. The
palette file, example.pal, is in the current directory, and a custom block
resides in a subdirectory. Both the custom block and the palette file (shown
in the yellow overlay) can use a relative path to refer to the icon. This
hierarchy works across platforms whenever the top of the hierarchy—in
this case /palettes—is the current working directory.

Note When you create the custom block, the bitmap file is copied to the block directory
and that image is used in the Palette Browser. If you no longer need the original file, you
can delete it.

The icon that appears for the block in the SuperBlock Editor is defined in
the block dialog box for the block. You can define a custom icon on the Icon
tab and set the Icon Type to Custom Icon on the Display tab. If you want
to use the same image in the Palette Browser and in the SuperBlock Editor,
you can use the same file. If the custom block imports a bitmap image, there
is no cross-platform restriction. SystemBuild displays any of the accepted
bitmaps—a .gif, .jpg, .bmp, or .xpm file—on any platform. Therefore,
you can use either bitmap file for the editor. By using a relative path, you
can use the same custom block on any platform. Figure 19-3 shows the

Chapter 19 Custom Palettes and Blocks

© National Instruments Corporation 19-17 SystemBuild User Guide

bitmap icon being specified for the SuperBlock Editor using a relative path.
You need to set these attributes before you create the custom block.

Note If you use the browser to find the file, your path is provided as an absolute path.
You then have to edit the path to get a relative path for use on all platforms.

Figure 19-3. Sample Custom Icon Specification for the SuperBlock Editor

Chapter 19 Custom Palettes and Blocks

SystemBuild User Guide 19-18 ni.com

Supporting Commands and Functions
You also can manipulate custom blocks with commands and functions
issued from the Xmath command area.

SystemBuild Access Support
The following SBA commands accommodate custom blocks and palettes.
For a complete description of each command, refer to the MATRIXx Help.

• CreateBlock—Handles the instantiation of custom blocks. The
palette keyword is used to specify a palette.

• ModifyBlock—Handles the modification of custom blocks. The
customhelp keyword allows you to specify the name of a Help file.

• QueryBlock—This function can be used to query custom blocks.

SystemBuild Utilities (SysbldEvent, SysbldRelease)

SysbldEvent
answer = SysbldEvent (event, mode, {MSFName});

Sysbldevent() lets you register Xmath MSFs to be called for specific
SystemBuild events. The MSF called can replace or supplement an action
normally performed by SystemBuild. SysbldEvent() returns 0 for
successful completion and 1 for failure.

SysbldEvent() has the following characteristics:

• Only one MSF at a time can be associated with an event.

• After you enable a SystemBuild event, it is called each time that event
is invoked.

Inputs are as follows:

event The SystemBuild event to be associated with this action.
The value can be either BlockOpen or Navigate.

mode Assign a value to mode—1 tells SystemBuild to send
Xmath the event specified by the event parameter. 0
disables the event. If you are enabling an event and you
have not specified a function to handle the event, then
the MSFName parameter is required.

Chapter 19 Custom Palettes and Blocks

© National Instruments Corporation 19-19 SystemBuild User Guide

The following example shows the SysbldEvent() parameters:

SysbldEvent ("BlockOpen",mode=1,MSFName="UserBlockOpen");

When you try to open a block dialog box from the editor, it calls Xmath,
which calls the MSF as follows:

UserBlockOpen("BlockOpen", block_id)

In the above example, block_id is the number of the block selected in the
editor. In the UserBlockOpen() MSF, you can use SBA to query or
modify the model. Then, if the MSF returns 0, the editor displays the
dialog. If the MSF returns 1, the editor continues without displaying the
dialog.

As soon as the SystemBuild Editor issues the event to be handled to Xmath,
all user actions in the editor are disabled. When the MSF returns, the editor
is enabled. Disabling the UI ensures that no conflict exists between the user
input and any editor-interactive commands, such as SBA, issued by
the MSF.

SysbldRelease
During a SysbldEvent() callback you are prevented from interacting
with the editor. The SysbldRelease() function is used to release the
editor when the callback no longer needs it. You also can use
SysbldRelease() if the user interface becomes locked and does not
release during SysbldEvent() operations.

MSFName A string containing the name of an Xmath MSF that
handles the specified event.

The Xmath MSF must accept two parameters:
block_id and event, where block_id is the block
identification number of the block selected by the editor
and event is the same event specified by the calling
SysbldEvent() function.

The return value from this MSF is 0 or 1, where 0 has
SystemBuild continue by handling the event which was
passed to this MSF and 1 has SystemBuild continue by
ignoring the event.

© National Instruments Corporation A-1 SystemBuild User Guide

A
Bibliography

[A80] Amit, N., “Optimal Control of Multirate Digital Control Systems,” Ph.D. thesis,
Stanford University, SUDAAR #523, July 1980.

[BCP89] Brenan, K.E., S.L. Campbell, and L.R. Petzold, Numerical Solution of Initial Value
Problems in Differential-Algebraic Equations, North-Holland, New York, 1989.

[BG73] R.L. Brown and C.W. Gear, “Documentation for DFASUB—A Program for the
Solution of Simultaneous Implicit Differential and Nonlinear Equations”,
University of Illinois at Urbana-Champaign, report UIUCDCS-R-73-575,
July 1973.

[BK93] Broucke, M., and S. Karahan, “Efficient Method for Integration of Stiff, Nearly
Linear Systems,” Proc. of the American Control Conference, V.3, pp. 2635-6,
San Francisco, California, June 1993.

[CdeB80] Conte, S.D., and C. deBoor, Elementary Numerical Analysis, McGraw-Hill, New
York, 1980.

[DFT92] John C. Doyle, Bruce A. Francis, and Allen R. Tannenbaum, Feedback Control
Theory, Chap 3, MacMillan Publishing Company, New York, 1992.

[F62] Fox, L., Numerical Solution of Ordinary and Partial Differential Equations,
Pergamon Press, 1962.

[FL91] Führer, C., and B. J. Leimkuhler, “Numerical solution of differential-algebraic
equations for constrained mechanical motion,” Numerische Mathematik, Vol 59,
pp. 55-69, 1991.

[G71a] Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice Hall, Englewood Cliffs, N.J., 1971.

[G71b] Gear, C. W., “Simultaneous Numerical Solutions of Differential-Algebraic
Equations", IEEE Transactions on Circuit Theory, CT-18, January 1971.

[G83] Glasson, D.P., “Development and Application of Multirate Digital Control,”
Control Systems Magazine, November 1983.

[H73] Hamming, R.W., Numerical Methods for Scientists and Engineers, McGraw-Hill,
New York, 1973.

Appendix A Bibliography

SystemBuild User Guide A-2 ni.com

[KMN89] Kahaner, D., C. Moler, and S. Nash, Numerical Methods and Software, Prentice
Hall, Englewood Cliffs, N.J., 1989.

[McL50] McLachlan, N.W., Ordinary Non-Linear Differential Equations in Engineering and
Physical Science, Oxford University Press, Glasgow, 1950.

[M70] Milne, E.M., Numerical Solution of Differential Equations, Dover Publications,
New York, 1970.

[P83] Petzold, L.R., “A Description of DASSL: A Differential/Algebraic System Solver,”
in Scientific Computing, pp. 65-68, eds. R.S. Stepleman et al, North Holland,
Amsterdam, 1983.

[PFTV89] Press, H.W., B.P. Flannery, S.A. Tevkolsky, and W.T. Vetterling, Numerical
Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge,
1989.

[SG79] Shampine, L.F., and C.W. Gear, “A User’s View of Solving Stiff Ordinary
Differential Equations,” SIAM Review, Vol.21, N.1, Jan. 1979.

© National Instruments Corporation B-1 SystemBuild User Guide

B
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support
include the following:

– Self-Help Resources—For immediate answers and solutions,
visit the award-winning National Instruments Web site for
software drivers and updates, a searchable KnowledgeBase,
product manuals, step-by-step troubleshooting wizards, thousands
of example programs, tutorials, application notes, instrument
drivers, and so on.

– Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at
ni.com/exchange. National Instruments Application Engineers
make sure every question receives an answer.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation I-1 SystemBuild User Guide

Index

Symbols
$SYSBLD/etc directory, 18-2
%Variables, 8-9, 8-11

A
actiming, 8-7
Adams-Bashforth-Moulton integration, 13-20
advanced load, 2-3
algebraic loop, 8-15, 13-9

and trim function, 11-6
detected, 8-17
initial conditions for, 8-18
integration algorithms for, 8-16

analyze function, 8-18
Editor tool, 8-21
from SystemBuild editor tool, 8-21
items displayed, 8-19
running by simulator, 8-18
sbInfo, 8-19
with implicit outputs, 13-4

animation.cfg
BUILD_LOAD_PICTURE, 18-24
ICON_DATA_FILE, 18-24
ICON_SOURCE_FILE, 18-24
PROCESS_PICTURES, 18-24
SYSTEM_BUILD_RTF_FILE, 18-24

animation.cfg file, IA, 18-22
asynchronous trigger SuperBlock, 6-13
AutoSave capability, 2-13
auxiliary constraints, 13-3

B
background

procedure SuperBlock, 6-6
simulation, 8-27

basic time period, 10-7
blocks

Code tab, 5-16
comment editor, 17-5
create (Palette Browser), 5-3
creating, 5-3
defining, 5-4
described in online help, 5-1
icon

colors, 5-23
types, 5-24

ID
determined by location, 7-11
number, 5-6

inputs, 5-6
name, 5-6
outputs

labels, 5-18
names, 5-18
type name, block dialogs, 5-18

parameters, specifying, 5-15
special behaviors, 5-2
states field, 5-6
supported in RVE, 9-18
tabs, 5-17
unsupported in RVE, 9-20
using matrix editor, 5-26

BOOLEAN data type, 5-35
Break block, 5-3
build, 1-3
building IA custom icons, 18-25

C
catalog, 2-1

browsing, 2-7

Index

SystemBuild User Guide I-2 ni.com

Catalog Browser
Catalog view, 2-7, 2-9, 2-19
Contents view, 2-7, 2-9

drag copies, 2-19
sort, 2-9

creating SuperBlock reference, 4-12
dragging and dropping objects, 2-19
modifying catalog, 2-17
navigating, 2-7
Quick Access menu, 2-14
saving selected data, 2-12
Shortcut menu, 2-14
tools, 2-20
transform SuperBlock tool, 6-27
using advanced load, 2-2

classical analysis tools, 12-1
color assignment (UNIX), 17-9
colors, block icons, 5-23
comment editor, 17-5
compilers, 14-33
component, 2-6, 16-1

%Variables, 16-10
creating, 16-9, 16-13
encrypted, 16-4
encryption, 16-16
exported variables, 16-11
interface, 16-2
licensing, 16-5
mapping parameters, 16-22
modifying, 16-13
open, 16-4
parameter mapping, 16-11
parameters, 16-7
PSET, 16-14
references, 16-3
restrictions, 16-9
SBLIBS, 16-16
scope, 16-10
unmake, 16-14

computational attributes, 10-1

Condition block, 5-2, 6-4
can contain Standard procedure, 6-5
procedures referenced from, 6-4

Connection Editor, 5-10
Add button, 5-10
Cancel button, 5-12
Del button, 5-11
Done button, 5-12
routing, 5-43

connections, 5-6
display, 5-12
rules, 5-7

constrained DAEs, 13-23
constraints

auxiliary, 13-3
in implicit models, 13-2
required, 13-3

continuous subsystem, 8-2
linearizing, 10-2
TimeDelay block, linearizing, 10-5

continuous SuperBlocks, 6-1
control.sog, IA control panel file, 18-2
conventions used in the manual, iv
copy

SuperBlock (copy and paste), 4-5
SuperBlock (rename), 4-18
SuperBlock (via SuperBlock

properties), 4-6
CREATERTF, 8-21
CREATEUSERTYPE, 15-43
Ctrl-p, 8-9
custom

block, 19-6
add to custom palette file,

19-8, 19-10
creating, 19-7
SBA support, 19-18
specifying associated files, 19-10
using Custom Block Wizard, 19-7

dialog, component, 16-24

Index

© National Instruments Corporation I-3 SystemBuild User Guide

icons
adding to block diagram, 18-1
building, 18-25
keywords, 18-24

palette, 19-1
custom block, 19-6
customizing SystemBuild, 17-1

D
DASSL, 8-16, 13-18, 13-19
data types, 4-11, 5-18, 5-34

classes of data, 5-34
floating point, 5-35
input/output data mismatch, 5-38
integer, 5-35
logical, 5-35
RT_BOOLEAN, 5-35
RT_FLOAT, 5-35
rules, 5-39
type-checking issues, 5-38

DataPathSwitch block, 5-3
DataStores

in catalog, 2-6
timing, 6-21
timing features, 6-21
using, 6-9

DELETEUSERTYPE, 15-43
demo, running, 1-4
diagnostic tools (NI resources), B-1
Differential Algebraic Equations (DAEs),

13-13, 14-3
differential equation solvers, 8-12
direct terms, 8-16

with UCBs, 14-11
discrete

subsystems, 6-2
linearizing, 10-4
types, 6-2

SuperBlocks, 6-2

documentation
conventions used in the manual, iv
NI resources, B-1

drag and drop, to attach an IA icon to a
block, 18-2

drivers (NI resources), B-1

E
EDIT_COMMENT environment

variable, 17-4
Editor

adding custom menus, 17-6
block label names, 5-33
changing font size, 5-44
classical analysis tools, 12-1
color assignment (UNIX), 17-9
connections, 5-7
creating

blocks, 5-4
custom menus, 17-6
SuperBlock reference, 4-14

default window position, 17-10
Display toolbar, 5-43
force catalog update, 2-20
modifying block diagram, 5-43
resizing and repositioning the

display, 17-10
scope, 2-15
shortcuts, 5-42
SuperBlock transform tool, 6-27

enabled periodic subsystem, 8-2
exact linearization, 10-5
example, using typecheck, 5-37
examples (NI resources), B-1
exiting SystemBuild, 1-4
explicit

models, 13-1
states, 13-3
UCB, 14-2

Index

SystemBuild User Guide I-4 ni.com

F
File SuperBlocks, 4-19
finite difference linearization, 10-5
fixed-point

32-bit operations, 15-32
arithmetic, 15-1

addition and subtraction, 15-7
division, 15-8

comparing with floating point, 15-17
compatible blocks, 15-1

with data types, 15-24
data type

conversion, 15-6
rules, 15-24

Gain block radix position, 15-33
linearization, 15-45
multiplication, 15-8
number representations, 15-3
overflow, 15-10, 15-13
relational operations, 15-9
simulation, ITypes, 15-27, 15-29
with simout, 15-46

fixpt, 5-37
floating point

data type, 5-35
greatest common divisor, 8-4

functional blocks, 4-2
FuzzyLogic block, linearizing, 10-6

G
Gear’s Method (GEARS), 13-29
Group ID, 8-3

H
help, technical support, B-1
hierarchy of SuperBlocks, 4-2

I
IA, 18-25

Builder
icon source code syntax, 18-26
palette files, 18-2

compiler, 18-26
icon source file, 18-7

icon definition
ANIMATION_GRAPHICS, 18-9
ANIMATION_POINTER, 18-8
BACKGROUND_SECTION, 18-8
DO, 18-12
DRAW_ARC, 18-14
DRAW_LINE, 18-15
DRAW_RECT, 18-13
DRAW_TEXT, 18-13
ERASE_VALUE, 18-14
FORM_DEFINITION, 18-9
GENERAL_LINE, 18-15
ICON_HEIGHT, 18-8
ICON_PRIVILEDGE, 18-8
ICON_WIDTH, 18-8
IF/THEN, 18-12
INITIALIZATION_SECTION, 18-8
INTEGER_VARIABLE, 18-8
MATH_FUNCTION, 18-12
OUTPUT_POINTER, 18-8
PALETTE_DEFINITION, 18-9
REAL_VARIABLE, 18-8
RELATIVE_POSITION_LINE, 18-15
ROTATE_LINE, 18-15
STATE_POINTER, 18-8
STATIC_GRAPHICS section, 18-8
STRING_VARIABLE, 18-8
types, 18-10

icon source file, IA, 18-7
ICON_SOURCE_FILE keyword

definition, 18-24
IconScript keywords, 18-12
ID number, block, 5-6

Index

© National Instruments Corporation I-5 SystemBuild User Guide

IfThenElse block, 5-2
implicit

models, 13-2
outputs, 13-3, 13-4
states, 13-3
UCB, 14-3

initial condition transformations, 6-29
inline procedure SuperBlocks, 6-6
input

data types, how set, 5-34
names, block dialog, 5-17
signals, block dialog, 5-17
vector, u, 8-26

instrument drivers (NI resources), B-1
integer data type, 5-35
integration algorithm, 13-14

Adams-Bashforth-Moulton, 13-32
Adams-Moulton, 13-20
DASSL

estimating err, 13-31
infinity norm, 13-31
solving DAE, 13-23

default, 13-14
Euler, 13-15
fixed-step Kutta-Merson, 13-17
GEARS, 13-29

solving DAE, 13-23
ODASSL, 13-23

estimating err, 13-31
solving DAE, 13-23

QuickSim, 13-21
Runge-Kutta, 13-16
selecting, 8-12
stiff system solver (DASSL), 13-18

operating point, 13-18
variable-step Kutta-Merson, 13-17

Integrator block functionality, 13-43
interactive, simulation. See ISIM
Interactive Animation (IA), 18-1

interrupt procedure SuperBlock, 6-7
IS_Jacobian, 14-44
ISIM, 9-1

and RVE, 9-12
color settings, 17-9
compared to IA, 9-2
debugging, 9-9
default

icon palette, 9-3
window position, 17-10

example, 9-3
icon update times, 9-9
monitoring block outputs, 9-9
pause, 9-8
resume, 9-8
run in background, 9-17
scaling aid blocks, 15-47
terminating, 8-29
view output labels, 9-9
window, 9-8

isim.sog, icon file, 18-2
iusr01 template, 14-6

K
Kalman-Bertram State-Space Method, 10-1
KnowledgeBase, B-1

L
labels

creating, 5-28
defined at source, 5-28
initializing matrix, 5-31
matricizing, 5-30
propagating, 5-23
shortcuts for editing, 5-33
showing, 5-22
SuperBlock external inputs, 5-29
vectoring, 5-30
with matrices, 5-30

Index

SystemBuild User Guide I-6 ni.com

Lagrange Multipliers, 13-25
linearization

at a non-zero time, 10-6
continuous time delay, 10-5
exact versus finite difference, 10-5
FuzzyLogic Block, 10-6
implicit form, 10-1
in fixed-point mode, 15-45
Kalman-Bertram state-space

method, 10-7
multirate, 10-7
procedure SuperBlocks, 6-5, 10-6, 12-1
resettable integrator, 10-6
single rate, 10-2

continuous, 10-2
discrete, 10-4
explicit, 10-2
implicit, 10-3

State Transition Diagram, 10-6
subsystem method, 10-7
UserCode block, 10-6

linksim, 14-31
LISTUSERTYPE, 15-43
LOAD, 2-2
load, advanced, 2-3
logical data type, 5-35

M
macro procedure SuperBlock, 6-5
matrix editor, SystemBuild, 5-26
menus, custom, 17-6
MIL-STD-2167A, comments documents, 17-5
MinMax

dataset, save, 15-40
display, 15-40
logging, 15-39
restrictions, 15-39

MODIFYUSERTYPE, 15-43
multirate linearization, 10-7

N
name

block, 5-6
SuperBlock, 4-7

names
creating, 5-28
initializing matrix, 5-31
matricizing, 5-30
vectoring, 5-30
with matrices, 5-30

namespace, 16-1
National Instruments support and

services, B-1
NI support and services, B-1

O
ODAE, 13-13
ODASSL, 8-16, 13-23
ODASSL with implicit UCB, 13-24
ODE, 13-13
open-loop frequency response tool, 12-3
operating point

DASSL, 14-21
Jacobian matrix computation, 14-22
ODASSL, 14-21

output data types, how set, 5-34
overdetermined stiff system solver

(ODASSL), 13-23

P
Palette Browser, using, 5-4
palette file, 19-1

block directory, 19-5
built-in, 19-4
default, 19-5, 19-6
IA, 18-2, 18-25
multiple level, 19-2
syntax, 19-3

palette, custom, 19-1

Index

© National Instruments Corporation I-7 SystemBuild User Guide

PALETTE_PATH, 19-6
panning the display, 5-43
parameter

root locus tool, 12-20
set. See PSET
variable scoping, 8-10

parameterized variables, 8-9
point-to-point frequency response tool, 12-11
printer settings, 17-4
procedure

subsystem, 8-2
SuperBlocks, 6-3

background, 6-6
in linearization, 10-6
inline, 6-6
interrupt, 6-7
linearization, 6-5, 12-1
macro, 6-5
standard, 6-5
startup, 6-7

programming examples (NI resources), B-1
propagate labels, 5-23
PSET, 16-14

example, 16-20
Psets_AddToList, 16-15
Psets_Load, 16-15
Psets_Save, 16-15

Q
Quick Access menu. See Shortcut menu

R
ReadVariable block, 6-4
reference, 4-2

component, 16-6
renaming, SuperBlock, 4-16
repositioning the display, 17-10
resettable integrator, linearization, 10-6
root locus tool, 12-13

RT_BOOLEAN data type, 5-35
RT_FLOAT data type, 5-35
RT_INTEGER data type, 5-35
RTF (real-time file), creating, 8-21
running simulations, 8-1
Run-Time Variable Editor. See RVE
RVE, 9-11, 9-13

commands and functions, 9-17
invoking, 9-13
supported blocks, 9-18
unsupported blocks, 9-20

S
SAVE, 2-11

AutoSave feature, 2-13
usertype keyword, 15-45

SBA, 7-1
command syntax, 7-3
error handling, 7-8
function syntax, 7-3
keyword formats, 7-9
sample scripts, 7-6
specifying mimo names, 7-10
updating Editor display, 7-6

SBLIBS, 4-19
sbsim command, 8-29
scheduler, 8-3

minor cycle, 6-22
Sequencer block, 5-3
SETSBDEFAULT, 8-23, 13-14

autosavefile, 2-13
autosavetime, 2-13

Shortcut menu, Catalog Browser, 2-14
shortcuts, 5-14
SHOWSBDEFAULT, 13-14
signal, 5-28
sim function, 8-25

bg, 8-27
function syntax, 8-25
iahold, 9-7

Index

SystemBuild User Guide I-8 ni.com

initmode, 13-9
interact, 9-6
PDM outputs, 8-26
sbsim, 8-29
sbview, 9-7
ucbcodeloc, 14-32
vars, 8-10

SIMAPI, 14-37
debug example, 14-45
debugging simulation, 14-41
source files, 14-37
UCB reference information, 14-37
variable access, 14-39

simAPI.h, 14-37
SIMAPI_FlushVars, 14-40
SIMAPI_GetBlockId, 14-38
SIMAPI_GetBlockInputLabel, 14-38
SIMAPI_GetBlockInputType, 14-37
SIMAPI_GetBlockName, 14-38
SIMAPI_GetBlockOutputLabel, 14-38
SIMAPI_GetBlockOutputType, 14-38
SIMAPI_GetDefaultOutputLabel, 14-38
SIMAPI_GetExternalInputDimension, 14-42
SIMAPI_GetExternalInputName, 14-43
SIMAPI_GetExternalInputValue, 14-43
SIMAPI_GetExternalOutputDimension, 14-42
SIMAPI_GetExternalOutputName, 14-43
SIMAPI_GetExternalOutputValue, 14-43
SIMAPI_GetImplicitOutputDimension, 14-42
SIMAPI_GetImplicitOutputName, 14-43
SIMAPI_GetImplicitOutputValue, 14-43
SIMAPI_GetImplicitSolverJacobian, 14-44
SIMAPI_GetNumVars, 14-39
SIMAPI_GetOperatingPointJacobian, 14-44
SIMAPI_GetSBName, 14-38
SIMAPI_GetSimStatus, 14-44
SIMAPI_GetStateDerivativeValue, 14-43
SIMAPI_GetStateDimension, 14-42
SIMAPI_GetStateName, 14-43
SIMAPI_GetStateValue, 14-43

SIMAPI_GetUCBBlockInfo, 14-37
SIMAPI_GetVarData, 14-40
SIMAPI_GetVarDatatypeName, 14-39
SIMAPI_GetVarDimension, 14-40
SIMAPI_GetVarIndexByName, 14-40
SIMAPI_GetVarName, 14-39
SIMAPI_GetVarPartition, 14-39
SIMAPI_GetVarStorageSize, 14-40
SIMAPI_GetVarUsertypeName, 14-39
SIMAPI_InitializeUserDebug, 14-42
SIMAPI_IsVarEditable, 14-39
SIMAPI_PutVarData, 14-40
SIMAPI_ResetVar, 14-40
SIMAPI_TerminateUserDebug, 14-42
simout function, 8-22, 13-23

with fixed-point, 15-46
simulation, 8-1

See sim function
abort, 8-29
API. See SIMAPI
background, 8-27
DataStores in, 6-10
errors, 8-30
extracting values (simout), 8-22
fixed-point intermediate types, 15-27
from Editor, 8-24
from the OS command line, 8-28, 8-29
initial conditions, 13-11
initialization mode, 13-9
input vector (u), 8-26
interactive, 9-1
maximum integration step size, 13-32
operating point, 13-9

changing, 13-11
continuous subsystem, 13-9
discrete subsystem, 13-9

scheduler, 8-3
states, 13-3
stopping background job, 8-27
termination, 8-29

Index

© National Instruments Corporation I-9 SystemBuild User Guide

time vector (t), 8-26
timing properties, 6-9
with ISIM, 9-10

single-rate systems, linearizing, 10-2
software (NI resources), B-1
source palette files, IA, 18-2
standalone simulation (sbsim), 8-29
starting SystemBuild, 1-3
startup custom palette file, 19-5
startup procedure SuperBlock, 6-7
startup.pal, 19-5
state event

continuous system, 13-41
UCB, 14-15

continuous, 13-46
ZeroCrossing block, 13-42

State Transition Diagrams, 2-6
linearizing, 10-6

stdwrt, 14-35
stiff system solver

DASSL, 13-18
ODASSL, 13-23

Stop block, 5-3
subsystem

continuous, 6-1
discrete, 6-2

enabled periodic, 8-6
free-running periodic, 8-6
trigger, 6-11, 8-6

asynchronous, 6-24
priority, 8-5

priorities, 8-5
procedure, 8-2
processor, Group ID, 8-3
pseudo-rate sample interval, 8-4

SuperBlock, 2-5
Attributes tab, 4-8
Block Properties dialog, 4-14
Code tab, 4-10

Comment tab, 4-12
continuous, 6-1
copy, paste, and rename, 2-17
create, 2-15, 2-17, 4-3

from existing blocks, 4-4
Document tab, 4-11
documentation generation, 17-5
Editor coordinates, 7-10
Editor. See Editor
File, 4-19
Inputs tab, 4-10
instances, 4-2
label names, 5-29

editing, 5-33
vectoring, 5-30

label, propagate, 4-16
name, 4-7
open, 2-14
output labels, 4-11
output names, 4-11
procedure, 6-3

background, 6-6
execution sequence, 6-17
inline, 6-6
interrupt, 6-7
macro, 6-5
standard, 6-5
startup, 6-7

properties, 4-7
defining, 4-6

Properties dialog
SuperBlock transformation

from, 6-28
reference, 4-2, 4-7, 4-14

in catalog browser, 4-3
in Editor, 4-14

rename, 4-16
top-level, 4-2, 4-7
transforming, 2-21, 6-25

undoing, 6-29
triggered, 6-3

Index

SystemBuild User Guide I-10 ni.com

support, technical, B-1
syntax rules, IA icons source code, 18-26
SysbldEvent, 19-18
SysbldRelease, 19-19
SystemBuild

Access. See SBA
demo, running, 1-4
exiting, 1-4
launching, 1-3
resource file, 17-8
starting, 1-3

T
technical support, B-1
text editor, changing default, 17-4
time response tool, 12-8
time vector (t), 8-26
timing attributes, UCB, 14-17
top-level SuperBlock, 4-7
training and certification (NI resources), B-1
transforming

gain block, 6-26
integrators, 6-26
PID controller, 6-26

triggered subsystem, 8-2
trim, 11-1, 11-2, 11-4

for systems with algebraic loop, 11-6
free integrators, 11-5

troubleshooting (NI resources), B-1
typecheck, usage in example, 5-37
TypeConversion block, usage, 5-36

U
UCB, 14-1

See also variable interface UCB
code location, 14-32
compile and link, 14-32
compilers, supported, 14-33

continuous, 13-46
debug example, 14-45
debugging, 14-41

user code, 14-33
direct terms, 14-11
error messages, how to generate, 14-35
execution order, 14-16
explicit, 14-2
implicit, 14-3

with sim, lin, or simout, 14-21
in SystemBuild vs. AutoCode, 14-1
initialization, 14-17
interface, 14-2
linearization, 10-6
makefile, 14-31
modes

EVENT, 14-5
INIT, 14-4
LAST, 14-6
LIN, 14-5
MONIT, 14-5
OUTPUT, 14-5
STATE, 14-5

multi-use, 14-30
numerical integration algorithm, 14-19
programming considerations, 14-29
specifying source code, 14-31
state events, 13-46, 14-15
templates, 14-6
timing attributes, 14-17
variable, interface UCB, 14-23
variable names in, 14-29

updating Catalog Browser, 2-20
user

initialization file, 17-1
parameters, 5-20

user.ini, 17-1
UserCode function, 14-2

arguments, 14-6
IINFO vector, 14-8

Index

© National Instruments Corporation I-11 SystemBuild User Guide

mode parameters, 14-9
RINFO vector, 14-9

user-defined data types. See UserType
UserType, 15-2

create, 15-42
delete, 15-43
editor, 15-42
modify, 15-43

usr01 template, 14-6

V
variable

blocks, 6-4
component mapping, 16-11

interface UCB
C wrapper required, 14-24
C wrapper, writing, 14-24
specifying interface, 14-27

parameterized, 8-9
scoping, 8-10

variable-step integration, 13-20
Adams-Moulton method, 13-20, 13-32
Kutta-Merson method, 13-31

W
Web resources, B-1
While block, 5-3
WriteVariable block, 6-4

	SystemBuild User Guide
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Introduction
	Product Overview
	Figure 1-1. The MATRIXx Product Family

	Starting SystemBuild
	Exiting SystemBuild
	Running SystemBuild Demos

	Chapter 2 Catalog Browser
	Loading Data
	Loading Data from Xmath
	Loading Data from the Catalog Browser in SystemBuild
	Figure 2-1. Catalog Browser View of Data from cb_ex1.cat

	Examining Catalog Components in the Catalog View
	Main Catalog
	Model
	SuperBlocks
	State Diagrams
	DataStores
	Components
	Variables
	UserTypes

	Libraries
	Xmath Partitions

	Working with Catalog Views
	Figure 2-2. Expanded Hierarchies and Adjusted Contents View (Windows)

	Saving Data
	Saving Data from Xmath
	Saving Data from the Catalog Browser
	Saving All Data
	Saving Selected Data

	Using AutoSave to Save Data

	Working with the Catalog Browser
	Using the Shortcut Menu in the Catalog Browser
	Opening a SuperBlock in an Editor
	Creating a New SuperBlock
	Figure 2-3. SuperBlock Properties Dialog Box

	Creating a New UserType
	Modifying a Catalog
	Modifying a UserType
	Dragging SuperBlock and State Transition Diagram Icons from the Catalog Browser to the Editor
	Dragging SuperBlock Icons from the Catalog View
	Dragging SuperBlocks and State Transition Diagram Icons from the Contents View
	Using the Drag and Drop Feature

	Updating the Catalog Browser Data from an Editor
	Using the Tools Menu

	Chapter 3 File and Configuration Management
	File Management
	Putting New Items into the Untitled Default File
	Modifying an Item in a File
	Deleting an Item in a File
	Moving an Item from One File to Another
	Overwriting Items in a File
	Creating a New File
	Saving All Files
	Saving Xmath Partitions

	Configuration Management
	Preparing to Use a CM Tool with SystemBuild
	Windows Operating Systems
	UNIX Operating Systems

	Getting Messages from Your CM Tool
	Connecting to Your Configuration Management Tool
	Opening a File
	Putting a File Under Configuration Control from SystemBuild
	Using Other Configuration Management Options
	Problems with Extension Names in Different Applications
	Additional Resources

	Chapter 4 SuperBlocks
	SuperBlock Hierarchies
	Figure 4-1. SuperBlock References in a SuperBlock Hierarchy

	Creating SuperBlocks
	Creating a New SuperBlock from the Catalog Browser
	Making a New SuperBlock from Existing Blocks
	Creating a Copy of a SuperBlock
	Creating a Copy with Copy and Paste
	Creating a Copy by Modifying the SuperBlock Properties

	Defining SuperBlock Properties
	SuperBlock Properties
	Figure 4-2. Legal and Illegal Connections
	Using the SuperBlock Properties Dialog
	Attributes Tab
	Code Tab
	Inputs Tab
	Outputs Tab
	Document Tab
	Comment Tab

	Creating a SuperBlock Reference
	Creating a Reference from the Catalog Browser
	Figure 4-3. Drag from the Catalog Browser Contents View, Drop in the Editor

	Creating a Reference from the Editor
	Defining the Reference SuperBlock Properties
	Figure 4-4. SuperBlock Block Dialog Box that References an Existing SuperBlock

	Renaming SuperBlocks
	Replacing a SuperBlock with Catalog Browser Rename
	Figure 4-5. Renaming a SuperBlock and All References
	Figure 4-6. Renaming a SuperBlock Without Renaming References

	Renaming SuperBlocks in the Editor

	Using File SuperBlocks

	Chapter 5 Blocks
	Types of Blocks
	Basic Functional Blocks
	Conditional Execution (Condition, IfThenElse Blocks)
	Repetitive Execution (While, Break Blocks)
	Terminating Execution (Stop Block)
	Execution Ordering (Sequencer Block)

	Creating a Model with Blocks
	Assigning the Basic Properties to Your Block
	Figure 5-1. Block Properties Visible in the Editor
	Raising the Block Dialog Box
	Defining the Basic Properties
	Figure 5-2. Example of Basic Properties Display in Block Dialog Box

	Using the Common Buttons

	Connecting Blocks
	Figure 5-3. Scalar Connections
	Connection Rules
	Creating Connections
	Creating a Simple Connection
	Table 5-1. Simple Connections
	Using the Connect Menu and the Toolbar Buttons

	Using the Connection Editor
	Figure 5-4. Connection Editor
	Creating Connections
	Deleting Connections
	Altering the Number of External Inputs or Outputs
	Displaying Connections
	Exiting the Connection Editor

	Defining Your Block
	Block Dialog Box Overview
	Figure 5-5. Motif and Windows Versions of the SuperBlock Dialog Box
	Differences Across Platforms
	Table 5-2. Cross-Platform Widget Appearance
	Dialog Box Navigation and Shortcuts

	Block Dialog Box Fields
	Parameters
	Figure 5-6. Gain Scheduler Block Dialog Box, Parameter Tab View
	Code
	Inputs
	Outputs
	States
	Document
	Comment
	Icon
	Display
	Figure 5-7. Inputs and Outputs on the Same Block Face
	Table 5-3. Integer Values and Approximate Colors
	Figure 5-8. Rotation and Direction Settings for Blocks

	Entering Matrix Data in Block Dialog Boxes
	Figure 5-9. Matrix Editor Field in Dialog Box
	Invoking the Matrix Editor
	Entering a Matrix
	Editing a Matrix

	Specifying Labels and Names
	Specifying SuperBlock External Input Labels
	Propagating Labels in a Hierarchy
	Creating Sequential Names for Vectors and Matrices
	Figure 5-10. Inputs Tab with Labels Specified as Matrices
	Shortcuts for Editing Labels or Names

	Specifying Data Types
	Traditional Data Types
	Data Type Checking
	Table 5-4. typecheck and fixpt in sim
	Figure 5-11. Data Type Mismatch Model
	Rules for Data Type Usage
	Table 5-5. Legal Data Types for Each Block (Except Fixed-Point Data Types)

	Modifying Block Diagram Appearance
	Automatic and Manual Connection Routing
	Figure 5-12. Diagrammatic Difference in Signals Splitting and Crossing

	Improving the Appearance of a Cluttered Diagram
	Figure 5-13. Modifying a Block Diagram

	Creating a SuperBlock That Uses the Connection Editor Extensively
	Figure 5-14. SuperBlock Forty Before Connections
	Figure 5-15. Connecting External Inputs to Forty
	Figure 5-16. Diagram Before External Output Connections
	Figure 5-17. Finished Diagram Before Appearance Improvement
	Figure 5-18. Diagram with Resized Blocks and Manual Routing with Vectorized Output from Twenty

	Chapter 6 SuperBlock Timing and Transformation
	Types of SuperBlocks
	Continuous SuperBlocks
	Discrete SuperBlocks
	Triggered SuperBlocks
	Procedure SuperBlocks
	Standard Procedure
	Macro Procedure
	Inline Procedure
	Asynchronous Procedure

	Effects of Nesting on Enabled and Trigger SuperBlocks
	Table 6-1. Relationship between Parent and Child Discrete and Trigger SuperBlocks

	Using DataStores
	Simulation Timing Properties
	Timing of Discrete Subsystems
	Figure 6-1. Simulation, Discrete Subsystem Output Timings

	Timing of Trigger Subsystems
	Figure 6-2. Trigger Subsystem Output Timings
	At Next Trigger
	At Timing Requirement
	As Soon As Finished
	Asynchronous

	Example: Using an Asynchronous Triggered SuperBlock
	Figure 6-3. Asynchronous Trigger Example
	Figure 6-4. Asynchronous Triggered Timing versus SAF

	Execution of Procedures During Simulation
	Figure 6-5. Pre-Simulation Initialization Steps

	AutoCode Timing Properties
	AutoCode Real-time Application Execution Sequence
	Figure 6-6. AutoCode Real-Time Application Execution Sequence

	AutoCode Timing Features Associated with Using DataStores
	Figure 6-7. DataStore Timings
	Figure 6-8. Writing into a DataStore Register from Two Different Subsystems
	Figure 6-9. Enabled Subsystem Writing into a DataStore

	AutoCode and the Asynchronous Triggered System

	SuperBlock Transformation
	Transformation Limitations and Implications
	Limitations
	Dynamic Blocks
	Gain Block
	Integrators and PID Controller

	Transformation Methods
	Transformation from the Catalog Browser
	Transformation from the SuperBlock Properties Dialog
	Initial Condition Transformations

	Undoing a Transformation

	Chapter 7 SystemBuild Access
	Overview
	Figure 7-1. SBA MathScript Blocks in the MATRIXx Context
	Figure 7-2. Typical SBA Program Used in a SystemBuild Application

	SBA Syntax
	Command Syntax
	Function Syntax
	Inputs, Optional Inputs, and Keywords

	Basic SBA Tasks
	Create
	Query
	Modify
	Display
	Delete
	Sample Scripts

	Using SBA
	Keyword Ordering
	Figure 7-3. StateSpace Block Dialog

	Block Parameters
	Error Handling
	Input Formats
	Typical Input Formats
	Table 7-1. Possible Input Formats
	Multiple Input/Output Specification

	SuperBlock Editor Coordinate System
	Figure 7-4. SystemBuild Coordinate System

	Tutorial
	Building the Predator-Prey Model
	Simulating the Predator-Prey Model

	Chapter 8 Simulator Basics
	Dividing Your Model into Subsystems
	How SystemBuild Divides Your Model Into Subsystems
	Assigning SuperBlocks to Additional Subsystems

	Scheduling Subsystems
	Figure 8-1. Derivation of a Pseudo-Rate
	Scheduling Continuous Subsystems
	Scheduling Discrete Subsystems
	Properties of Discrete Scheduled Subsystems
	Matching the Timing of AutoCode for Discrete Systems

	Setting Options and Parameters for Your Model
	Simulation Time Lines, Inputs, and Outputs
	Input Time Line
	Internal Time Line
	Computing External Input Values
	Output Time Line

	Changing Parameters for Repeated Simulations
	The Simulation vars Keyword
	Parameter Variable Scoping
	Figure 8-2. Example of %Variable Scoping

	Selecting an Integration Algorithm
	Integration Algorithms
	Integration Algorithm Recommendations
	Table 8-1. Selecting an Integration Algorithm

	Analyzing Your Model Prior to Simulation
	Working with Algebraic Loops
	Figure 8-3. Algebraic Loops Computation Problem
	Figure 8-4. Algebraic Loops Initialization Problem
	Figure 8-5. MIMO Blocks Example

	Using the analyze() Function
	Invoking analyze from the Xmath Command Area
	Invoking analyze from the SuperBlock Editor

	Saving Your Model with the CREATERTF Command

	Some Additional Tools
	Extracting Dynamic State Values with the simout() Function
	Keywords Specific to simout() for Initial Condition
	Outputs

	Showing and Setting Keyword Default Options

	Simulating Your Model
	SuperBlock Editor Simulation Interface
	Figure 8-6. SystemBuild Simulation Parameters Dialog

	Xmath Command Area Simulation Interface
	Sim Function Syntax
	Background Simulation

	Operating System Command Line Simulation Interface

	Terminating Your Simulation
	Simulation Errors
	Simulation Software Errors
	Hardware Errors
	Operating System Errors

	Chapter 9 Interactive Simulation
	Interactive Simulation Versus Interactive Animation
	Table 9-1. ISIM and IA Compared

	Constructing an ISIM Model
	Using the IA Palettes
	Building an ISIM Car Model
	Figure 9-1. Diagram with Input and Output Icons

	Running ISIM
	Keywords and Syntax for Running ISIM
	Invoking ISIM
	Invoking ISIM for a Specific SuperBlock
	Invoking Non-Interactive Simulation with IA Blocks
	Pausing ISIM at a Non-Zero Time

	ISIM Window
	Special Notes on ISIM
	Simulating the Car Model

	Using the Run-Time Variable Editor
	Figure 9-2. RVE in ISIM and RealSim Contexts
	RVE and ISIM
	Figure 9-3. Run-Time Variable Editor
	Figure 9-4. Plot with Run-Time Variable Editing Illustrated

	RVE Commands and Functions
	RVE-Compatible Blocks
	Table 9-2. Blocks Supported in RVE

	Chapter 10 Linearization
	Linearizing Single-Rate Systems About an Initial Operating Point
	Continuous Systems
	Explicit Form
	Implicit Form

	Discrete Systems

	Exact Versus Finite Difference Linearization
	Special Linear Models
	Continuous Time Delay
	State Transition Diagrams
	FuzzyLogic Block
	Integrator Block (Resettable)
	UserCode Blocks
	Procedure SuperBlocks Referenced from Condition Blocks

	Linearizing Single-Rate Systems About a Final Operating Point
	Multirate Linearization
	Kalman-Bertram Method
	Interpretation of Multirate lin Results
	Figure 10-1. Hybrid Linear System

	Subsystem Method
	Linearizing Fixed-Point Blocks

	Chapter 11 Operating Point Computation
	trim() Syntax
	trim() Algorithm
	trim() Behavior
	Stability
	Free Integrators
	Algebraic Loops

	trim() Examples

	Chapter 12 Classical Analysis Tools
	Using the Tools
	How SystemBuild Proceeds to Analyze Your Model
	Open-Loop Frequency Response
	Figure 12-1. Open-Loop Frequency Response Dialog Box
	Figure 12-2. Open-Loop classical 1 System Before Editing
	Figure 12-3. Open-Loop Bode Plot (Typical)
	Figure 12-4. Open-Loop Analysis Model

	Time Response
	Figure 12-5. Time Response Dialog
	Figure 12-6. Step Response Plot
	Figure 12-7. Time Response Analysis Model

	Point-to-Point Frequency Response
	Figure 12-8. Open-Loop classical 2 System Before Editing
	Figure 12-9. Closed-Loop Example for Analysis
	Figure 12-10. Bode Plot of the Point-to-Point Example

	Root Locus
	Figure 12-11. Root Locus Dialog
	Application to a Linear System
	Figure 12-12. Root Locus Plot

	Application to a Multirate, Nonlinear System
	Figure 12-13. Root Locus Plot of the Built Model

	Parameter Root Locus
	Figure 12-14. example1
	Figure 12-15. Parameter Root Locus Dialog
	Figure 12-16. Parameter Root Locus Plot of the example1 Diagram

	Chapter 13 Advanced Simulation
	Explicit versus Implicit Models
	Explicit Models
	Implicit Models
	Constraints
	Simulation State
	Implicit Outputs
	Initialization
	Examples
	Figure 13-1. Algebraic Loop Solver of x**2 = 4
	Figure 13-2. Solving x**2 = 4 Using an ImplicitOutput Block
	Figure 13-3. Solving x**2 = 4 Using ImplicitVariable and ImplicitConstraint Blocks
	Figure 13-4. An Exact PID Controller
	Figure 13-5. Comparison of Exact versus Approximate PID Controllers.

	Operating Points
	Continuous Subsystem
	Discrete Subsystems

	Inserting Initial Conditions
	Figure 13-6. 1/s Substitution in Discrete Integrator

	Matrix Blocks in the Simulator
	Sim Integration Algorithms
	Comparing Integration Algorithms
	Overview of the Algorithms
	Euler Integration Method
	Figure 13-7. Forward Euler Integration
	Second Order Runge-Kutta (Modified Euler) Method
	Figure 13-8. Second-Order Runge-Kutta Integration
	Fourth-Order Runge-Kutta Method
	Fixed-Step Kutta-Merson Method
	Variable-Step Kutta-Merson Method
	Stiff System Solver
	Variable-Step Adams-Bashforth-Moulton Method
	QuickSim Method
	Over-Determined Differential Algebraic System Solver
	Figure 13-9. Pendulum Example Diagram
	Gear’s Method

	Absolute and Relative Tolerances
	Variable-Step Kutta-Merson Method
	Stiff System Solvers (DASSL and ODASSL)
	Variable-Step Adams-Bashforth-Moulton Method

	Computing the Maximum Integration Stepsize in Variable-Step Integration Algorithms
	Sample Simulation
	Figure 13-10. Block Diagram of the Cubic Spring Model
	Figure 13-11. Position Response
	Figure 13-12. Errors in Euler Integration
	Figure 13-13. Errors in Fixed and Variable-Step Integration Algorithms (1)
	Figure 13-14. Errors in Fixed and Variable-Step Integration Algorithms (2)
	Figure 13-15. reltol and Variable-Step Adams-Moulton Method
	Figure 13-16. reltol and Variable-Step Kutta-Merson; All Curves Superimposed
	Figure 13-17. reltol and the Stiff System Solver
	Figure 13-18. Norms and the Stiff System Solver

	State Events
	ZeroCrossing Block
	Example Using a Sinusoid Signal
	Figure 13-19. Zero Crossings of a Sine Wave
	Example Using a Bouncing Ball
	Figure 13-20. Bouncing Ball Model
	Figure 13-21. Plot of Bouncing Ball Example

	Continuous UserCode Blocks

	Chapter 14 UserCode Blocks
	The Numerics of UCBs
	Explicit UCBs
	Implicit UCBs

	The Structure of UCBs
	Modes of Operation
	INIT Mode
	STATE Mode
	OUTPUT Mode
	MONIT Mode
	EVENT Mode
	LIN Mode

	UCB Templates
	UserCode Function Calling Arguments
	IINFO Array
	Table 14-1. IINFO Vector
	RINFO Array
	Table 14-2. RINFO Vector
	Mode Parameters
	Table 14-3. Mode Parameters

	Direct Terms
	Figure 14-1. UCB with Direct Terms

	State Events

	How SystemBuild Executes UserCode Blocks
	Execution of STATE Versus OUTPUT Modes in the UserCode
	Timing Attributes
	Initialization
	Simulation INIT Modes
	Impolite UCB Initialize Mode
	Table 14-4. State and State Derivative Initial Conditions

	Numerical Integration Algorithm
	Operating Points
	Implicit Integration Algorithm Operating Point
	Computing the Operating Point Jacobian Matrix
	Computing the Implicit Solver Jacobian Matrix

	Variable Interface UserCode Blocks
	Figure 14-2. SystemBuild and AutoCode Share User Code
	Using a Wrapper for SystemBuild to Simulate Code Written for AutoCode
	Figure 14-3. Excerpts from samp_vucb.c

	Writing a Wrapper
	Converting Data from the sim() Interface
	Converting Data Back to the sim() Interface

	Specifying the Variable Interface
	Setting Variable Interface Parameters
	Specifying Data Types
	Specifying Input Shapes
	Specifying Output Shapes

	Running a Variable Interface Example
	Simulating the Variable Interface UCB in SystemBuild
	Generating Code for a Variable Interface UCB in SystemBuild

	UCB Programming Considerations
	Building, Linking and Debugging UCBs
	Collecting UserCode Files
	Parameters Tab of the UserCode Block Dialog
	CSOURCE and FSOURCE
	Specifying Sources in the makefile
	Reusing Sources from the Previous Simulation
	Specifying Another Location for UCB Code

	Compiling and Linking User Code
	Debugging User Code

	Posting Error Indications
	Writing User Messages to the Xmath Window
	Simulation Errors

	Simulation API
	Gathering UCB Reference Information
	Accessing and Modifying Variables
	Accessing Simulation Debugging Information
	Functions to Initialize and Terminate Debug Data
	Functions to Return the Dimensions of the SystemBuild Model
	Functions to Return Signal Names of the SystemBuild Model
	Functions to Return Signal Values of the SystemBuild Model
	Functions to Return the Jacobians of the SystemBuild Model
	Function to Return the Simulation Status of simexe()

	SIMAPI Debug UserCode Block Example
	SIMAPI Debugging Notes

	Chapter 15 Fixed-Point Arithmetic
	Introduction to Fixed-Point Arithmetic
	Fixed-Point Number Representation
	Figure 15-1. An Unsigned Fixed-Point Number with 8 Bits and Radix Position 4
	Figure 15-2. A Signed Fixed-Point Number with 8 Bits and Radix Position of 6

	Conversion Between Fixed-Point Numbers
	Addition and Subtraction
	Multiplication
	Division
	Relational Operations
	Overflow

	SystemBuild Fixed-Point
	User Interface
	Simulator
	Building a Model and Demonstrating Overflow
	Figure 15-3. SuperBlock Dialog Box with Input Types Shown
	Figure 15-4. Outputs Tab with Signed Byte Chosen
	Figure 15-5. Fixed-Point Plot without Overflow
	Figure 15-6. Fixed-Point Plot with Overflow

	Comparing Fixed- and Floating-Point Numbers
	Figure 15-7. Example Showing How to Compare Fixed and Floating Types; SB0 Case Shown
	Figure 15-8. Block 1 Parameters Tab
	Figure 15-9. Block 1 Outputs Tab
	Figure 15-10. SystemBuild Simulation Parameters Dialog, Ready for Simulating Comparison
	Figure 15-11. Plot of Comparison with Radix Position 6
	Figure 15-12. Plot of Comparison with Radix Position 0

	Comparing the Effects of Different Conversion Sequences
	Figure 15-13. Model for Data Type Conversion before and after Multiplication
	Figure 15-14. Plot of the Data Type Conversion before and after Multiplication Example

	Fixed-point Blocks and I/O Data Type Rules
	Table 15-1. Blocks Compatible with Fixed Point, with Data Type Rules
	Advanced Simulation Topics
	Intermediate dialog boxTypes
	Figure 15-15. Add and Subtract Sequencing
	Simulation Issues
	Figure 15-16. Adding Three Operands
	32-bit Operation Issues
	Gain Block: A Special Case

	Radix Calculations
	Figure 15-17. Gain Block Radix Example
	Figure 15-18. Plot Comparing Different Gain Radix 5 versus 6
	Figure 15-19. Plot of Gain Radix Positions with Overflow

	MinMax Data Logging
	Activating MinMax Logging
	Simulating with the minmax Keyword
	Saving MinMax Data Sets to a File

	MinMax Display Tool
	Figure 15-20. MinMax Display, Simple Overflow (Figure 15-19 Example Shown)

	Display Options

	User-Defined Data Types (UserTypes)
	UserType Editor
	Figure 15-21. UserType Editor

	UserType MathScript Commands
	Using UserTypes in SystemBuild
	Storing UserTypes

	SystemBuild Functions in Fixed-Point
	Linearization Function
	Simout Function

	Scaling Aid Blocks
	Figure 15-22. Scaling Aid Icons

	Chapter 16 Components
	Introduction
	Component Scope
	Component Interface
	Component Parameter Sets
	Component References
	Component Access
	Open Components
	Encrypted Components
	Licensed Components
	Table 16-1. Summary of Component Types

	Using Components in SystemBuild Models
	Viewing Components
	Figure 16-1. Default Component Icon

	Creating References to Components
	Controlling Component Parameters
	Loading Component Parameter Sets
	Changing Scope into a Component Catalog
	Simulating Models with Components

	Creating Components
	Restrictions on Component SystemBuild Hierarchies
	Understanding Parameterization of Components
	Understanding the Component Scope
	Mapping Exported Variables
	Customizing the Component Dialog
	Documenting the Component
	Creating Components Using the Component Wizard
	Modifying Components
	Unmaking a Component

	Creating and Using Parameter Sets
	Using SBA with Components
	Distributing SystemBuild Components
	Encrypting and Licensing Components

	Examples
	Encapsulating a SuperBlock Hierarchy
	Exporting Component Parameters
	Figure 16-2. Exported Variables in a Component Reference Dialog

	Using the Parameter Set Interface
	Interface Mapping
	Using a Custom Dialog

	Chapter 17 SystemBuild Customization
	User Initialization File
	File Format
	Printer Settings (UNIX)
	Default Text Editor
	Comment Editor
	Custom Menus
	A Typical Template for User Menus
	Using the Sample User Initialization File that Calls MSCs

	SystemBuild Resource File (UNIX)
	Controlling Colors
	Foreground and Background
	Table 17-1. SystemBuild and ISIM Color Defaults
	SystemBuild and ISIM Color Settings

	Resizing, and Repositioning the Display
	Table 17-2. Display Sizing and Positioning Variables

	Chapter 18 Custom Icons
	IA Basics
	Adding a Custom Icon to a Block Diagram
	Sample Icon Source

	Defining Custom SystemBuild Icons
	Importing or Referencing an External Bitmap
	Creating or Attaching an IA Source Icon
	Figure 18-1. A User-Defined Icon and Its Description On the Icon Tab
	Figure 18-2. Strip Chart Icon Attached to a Primitive Block

	Icon Source File
	Icon Identification
	Table 18-1. Parameters for the IDENTIFICATION Portion of the Icon Source File

	Types
	Hardcoded Integer Type
	Hardcoded Real Types
	Hardcoded String Type

	General Control and Calculation Statements
	Table 18-2. Control and Calculation Keywords

	General Graphic Statements and Coordinate System
	General Graphic Characteristic Statements
	Animation Statements
	Pointer Action Statements
	Palette Definition

	Animation Configuration File
	Important Animation Configuration Keywords for Customized Icons
	Icon Source File for Customized Icons and New Palettes

	Building Your Own IA Custom Icons
	Figure 18-3. Building Custom IA Icons

	Chapter 19 Custom Palettes and Blocks
	Custom Palettes
	Creating Palette Files
	Palette File Syntax
	PaletteFile
	BlockDirectory

	Defining the Default SystemBuild Palette
	Closing and Reloading the Default Palette

	Custom Blocks
	What Kinds of Blocks Can Be Customized?
	Creating a Basic Custom Block
	Figure 19-1. Custom Block Wizard Fields

	Creating More Sophisticated Custom Blocks
	Step 1: Create a Custom Block Using the Custom Block Wizard
	Step 2: Add a Custom Block to a Custom Palette File
	Step 3: Open the Custom Palette File

	Including a Startup MathScript File with the Custom Block
	Including a Custom Help File with the Custom Block
	Additional Custom Block Features
	Dependent File
	Icon for the Palette Browser
	Parameter Sets

	Using Relative Paths for Icon Files
	Figure 19-2. Sample Directory Structure with Accompanying Palette File
	Figure 19-3. Sample Custom Icon Specification for the SuperBlock Editor

	Supporting Commands and Functions
	SystemBuild Access Support
	SystemBuild Utilities (SysbldEvent, SysbldRelease)
	SysbldEvent
	SysbldRelease

	Appendix A Bibliography
	Appendix B Technical Support and Professional Services
	Index
	Symbols
	A-C
	D-E
	F-I
	K-L
	M-P
	Q-S
	T-U
	V-W

